Skip to main content

Biodegradation and Remediation of Pesticides in Contaminated Agroecosystems: Special Reference to Glyphosate and Paraquat

  • Chapter
  • First Online:
Microbial BioTechnology for Sustainable Agriculture Volume 1

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 33))

Abstract

The usage of pesticides in agricultural practices contributes to an improvement in food production through monitoring insects, weeds, and crop diseases, with the aim of ensuring food sustainability to meet the needs of increasing population. However, the widespread application of these substances has numerous harmful consequences on the soil and on both environmental and human health. Moreover, in developed nations, the nonrational usage of chemicals, as well as banned forms, presents a major danger and increases contaminated agricultural lands at alarming rates, as well as polluting surface and groundwater. Glyphosate [N-(phosphonomethyl) glycine] is a broad-spectrum systemic herbicide that blocks the enzyme required by plants to produce amino acids and proteins. At present, in all fields (environment, agriculture, toxicology), it has become important to talk about paraquat (1,1′-dimethyl-4,4′-bipyridium) when it comes to glyphosate. Similarly, in recent years, these two herbicides have been the focus of many toxicities and biodegradation studies. Bioremediation by microbial biotechnology is also one of the most recommended solutions to alleviate the impact of these contaminants and is known to be an environmentally safe soil and water remediation technology. The principle of bioremediation is the modification and removal of pesticides in the form of nontoxic compounds used as nutrients for plants. Several approaches are commonly used, such as biostimulation and bioaugmentation. The discovery of potent microbial strains and the screening of degradation genes are currently a challenge for scientific researchers. In this context, this chapter highlights and summarizes contaminants, their environmental implications, and the biotechnological use of bacteria that may be used for bioremediation in order to remediate polluted areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham J, Silambarasan S, Logeswari P (2014) Simultaneous degradation of organophosphorus and organochlorine pesticides by bacterial consortium. J Taiwan Inst Chem Eng 45:2590–2596

    Article  CAS  Google Scholar 

  • Abubakar Y, Tijjani H, Egbuna C, Adetunji CO, Kala S, Kryeziu TL et al (2020) Pesticides, history, and classification. In: Egbuna C, Sawicka B (eds) Natural remedies for pest, disease and weed control. Elsevier, Amsterdam, pp 29–42

    Chapter  Google Scholar 

  • Ahmadian E, Eftekhari A, Kavetskyy T, Khosroushahi AY, Turksoy VA, Khalilov R (2020) Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes. Pestic Biochem Physiol 167:1–8

    Article  CAS  Google Scholar 

  • Aislabie J, Lloyd-Jones G (1995) A review of bacterial-degradation of pesticides. Soil Res 33:925–942

    Article  CAS  Google Scholar 

  • Allsop M, Huxdorff C, Johnston P, Santillo D, Thompson K (2015) Pesticides and our health—a growing concern. Greenpeace Research Laboratories (RLG), School of Biosciences, Innovation Centre Phase 2, University of Exeter, Exeter, p 56

    Google Scholar 

  • Almeida RM, Yonamine M (2007) Gas chromatographic—mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples. J Chromatogr B 853:260–264

    Article  CAS  Google Scholar 

  • Amghar D (2019) Contribution à l’étude de l’influence d’un herbicide, le Glyphosate et d’un fongicide, le Mancozèbe, sur la germination, la croissance et la physiologie de deux céréales: Hordeumvulgare L. et Avenasativa L. PhD Thesis, Mouloud Mammeri University, Tizi Ouzou, Algeria

    Google Scholar 

  • Amondham W, Parkpian P, Polprasert C, Delaune RD, Jugsujinda A (2006) Paraquat adsorption, degradation, and remobilization in tropical soils of Thailand. J Environ Sci Health Pt B 41:485–507

    Article  CAS  Google Scholar 

  • Andreu V, Picó Y (2004) Determination of pesticides and their degradation products in soil: critical review and comparison of methods. Trends Anal Chem 23:772–789

    Article  CAS  Google Scholar 

  • Ardiwinata AN, Harsanti ES, Kurnia A, Sulaeman E, Fauriah R, Paputri DMW (2019) Contamination of paraquat residues in soil and water from several provinces in Indonesia. In: Proceeding of AIP Conference 2120, p 40024

    Google Scholar 

  • Badroo IA, Nandurkar HP (2019) Paraquat dichloride induced carbohydrate metabolism alterations in fresh water Teleost fish Channa punctatus (Bloch, 1793) after acute Exposure. In: Proceeding of National Conference Special Issue, p 42

    Google Scholar 

  • Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol 51(2):432–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barriuso E, Calvet R (1992) Soil type and herbicides adsorption. Int J Environ Anal Chem 46:117–128

    Article  CAS  Google Scholar 

  • Barriuso E, Calvet R, Schiavon M, Soulas G (1996) Les pesticides et les polluants organiques des sols. Etude Gest des sols 3:279–296

    Google Scholar 

  • Benachour N, Sipahutar H, Moslemi S, Gasnier C, Travert C, Seralini GE (2007) Time-and dose-dependent effects of roundup on human embryonic and placental cells. Arch Environ Contam Toxicol 53:126–133

    Article  CAS  PubMed  Google Scholar 

  • Benbrook CM (2012) Impacts of genetically engineered crops on pesticide use in the US-the first sixteen years. Environ Sci Eur 24:24

    Article  CAS  Google Scholar 

  • Benslama O (2014) Isolement et caractérisation des bactéries capables de dégrader l’herbicide Glyphosate et optimisation des conditions de culture pour une dégradation plus efficace. PhD Thesis, Constantine 1 University, Algeria

    Google Scholar 

  • Benslama O, Boulahrouf A (2016) High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosatedegrading bacterium isolated from a sandy soil of Biskra, Algeria. Genomics Data 8:61–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bento CPM, Yang X, Gort G, Xue S, van Dam R, Zomer P et al (2016) Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Sci Total Environ 572:301–311

    Article  CAS  PubMed  Google Scholar 

  • Bonneh-Barkay D, Reaney SH, Langston WJ, Di Monte DA (2005) Redox cycling of the herbicide paraquat in microglial cultures. Mol Brain Res 134:52–56

    Article  CAS  PubMed  Google Scholar 

  • Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci Former Pest Sci 64:441–456

    Article  CAS  Google Scholar 

  • Botta F, Lavison G, Couturier G, Alliot F, Moreau-Guigon E, Fauchon N et al (2009) Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere 77:133–139

    Article  CAS  PubMed  Google Scholar 

  • Boulet A (2005) Lutte contre la pollution des eaux par les pesticides utilisés en zones non agricoles: analyse et synthèse des actions engagées et recommandations. PhD Thesis, Inst Natl Agron Paris, France

    Google Scholar 

  • Bourée P, Ensaf A (2016) Guyane: intoxication fatale au paraquat. Rev Francoph des Lab 478:67–70

    Google Scholar 

  • Brodskiy ES, Shelepchikov AA, Feshin DB, Agapkina GI, Artukhova MV (2016) Content and distribution pattern of dichlorodiphenyltrichloroethane (DDT) in soils of Moscow. Moscow Univ Soil Sci Bull 71:27–34

    Article  Google Scholar 

  • Bujacz B, Wieczorek P, Krzysko-Lupicka T, Golab Z, Lejczak B, Kavfarski P (1995) Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl Environ Microbiol 61:2905–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bus JS (2015) Analysis of Moms Across America report suggesting bioaccumulation of glyphosate in US mother’s breast milk: implausibility based on inconsistency with available body of glyphosate animal toxicokinetic, human biomonitoring, and physico-chemical data. Regul Toxicol Pharmacol 73:758–764

    Article  CAS  PubMed  Google Scholar 

  • Calvet R (2005) Les pesticides dans le sol: conséquences agronomiques et environnementales. France Agricole Editions, 637 p

    Google Scholar 

  • CAPM (2010) Centre Anti Poison du Maroc. Toxicologie Maroc. vol 4. 1er trimestre. 15 p

    Google Scholar 

  • Carlisle SM, Trevors JT (1988) Glyphosate in the environment. Water Air Soil Pollut 39:409–420

    Article  CAS  Google Scholar 

  • Carson R (2002) Silent spring. Houghton Mifflin Harcourt en English—40th anniversary ed. 1st Mariner Books ed, 287 p

    Google Scholar 

  • Chang CY, Peng YC, Hung DZ, Hui WH, Yang DY, Lin TJ (1999) Clinical impact of upper gastrointestinal tract injuries in glyphosate-surfactant oral intoxication. Hum Exp Toxicol 18:475–478

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Guo W, Ngo HH (2019) Pesticides in stormwater runoff—a mini review. Front Environ Sci Eng 13:72

    Article  CAS  Google Scholar 

  • Climent MJ, Coscollà C, López A, Barra R, Urrutia R (2019) Legacy and current-use pesticides (CUPs) in the atmosphere of a rural area in central Chile, using passive air samplers. Sci Total Environ 662:646–654

    Article  CAS  PubMed  Google Scholar 

  • Cohen GM, Doherty MA (1987) Free radical mediated cell toxicity by redox cycling chemicals. Br J Cancer Suppl 8:46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crop Life Maroc (2018) Article sur le marché des produits phytosanitaires au Maroc. http://www.croplife.ma/Pdf/Article_sur_le_marche_phytosanitaire_au_Maroc.mai_2011.pdf. Accessed 7 Oct 2018

  • Cruz JM (2016) Etude de la contamination par les pesticides des milieux eau , air et sols : developpement de nouveaux outils et application à l ’estuaire de la Gironde. PhD Thesis, University Of Bordeaux, Bordeaux, France

    Google Scholar 

  • Cycoń M, Zmijowska A, Wójcik M, Piotrowska-Seget Z (2013) Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J Environ Manage 117:7–16

    Article  CAS  PubMed  Google Scholar 

  • D’Archivio AA, Maggi MA, Odoardi A, Santucci S, Passacantando M (2018) Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate. Nanotechnology 29:65701

    Article  CAS  Google Scholar 

  • Dalton H, Stirling DI (1982) Co-metabolism. Philos Trans R Soc Lond B Biol Sci 297:481–496

    Article  CAS  PubMed  Google Scholar 

  • Damanakis M, Drennan DSH, Fryer JD, Holly K (1970) The adsorption and mobility of paraquat on different soils and soil constituents. Weed Res 10:264–277

    Article  CAS  Google Scholar 

  • Dayan FE, Barker A, Bough R, Ortiz M, Takano H, Duke SO (2019) Herbicide mechanisms of action and resistance. Plants 8:341

    Article  CAS  PubMed Central  Google Scholar 

  • De Roos AJ, Blair A, Rusiecki JA, Hoppin JA, Svec M, Dosemeci M et al (2005) Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study. Environ Health Perspect 113:49–54

    Article  CAS  PubMed  Google Scholar 

  • Dennis PG, Kukulies T, Forstner C, Orton TG, Pattison AB (2018) The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Sci Rep 8:2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deschomets G (2001) Les adjuvants du glyphosate. Phytoma, la défense des végétaux 541:14–16

    CAS  Google Scholar 

  • Dick RE, Quinn JP (1995) Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiol Lett 134(2–3):177–182

    Article  CAS  Google Scholar 

  • Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61(3):219–224

    Article  CAS  PubMed  Google Scholar 

  • Dominguez A, Brown GG, Sautter KD, De Oliveira CMR, De Vasconcelos EC, Niva CC et al (2016) Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Sci Rep 6:19731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druille M, Cabello MN, Omacini M, Golluscio RA (2013) Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Appl Soil Ecol 64:99–103

    Article  Google Scholar 

  • Du J, Gridneva Z, Gay MC, Trengove RD, Hartmann PE, Geddes DT (2017) Pesticides in human milk of Western Australian women and their influence on infant growth outcomes: a cross-sectional study. Chemosphere 167:247–254

    Article  CAS  PubMed  Google Scholar 

  • Duke SO (1990) Overview of herbicide mechanisms of action. Environ Health Perspect 87:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duke SO (2018) The history and current status of glyphosate. Pest Manag Sci 74:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Duke SO (2020) Glyphosate: environmental fate and impact. Weed Sci 68:201–207

    Article  Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci Former Pest Sci 64:319–325

    Article  CAS  Google Scholar 

  • Duke SO, Powles SB (2009) Glyphosate-resistant crops and weeds: now and in the future. AgBioForum 12:346–357

    Google Scholar 

  • Durand C (2007) Les Biotechnologies au feu de l’éthique. L’Harmattan, Paris

    Google Scholar 

  • Eddleston M (2020) Poisoning by pesticides. Medicine 48:214–217

    Article  Google Scholar 

  • EFSA, European Food Safety Authority (2021) Glyphosate: application for renewal. Available via DIALOG. https://www.efsa.europa.eu/en/topics/topic/glyphosate. Accessed 01 May 2021

  • Elbana T, Gaber HM, Kishk FM (2019) Soil chemical pollution and sustainable agriculture. In: El-Ramady H, Alshaal T, Bakr N, Elbana T, Mohamed E, Belal AA (eds) The soils of Egypt. World soils book series. Springer, Cham, pp 187–200

    Google Scholar 

  • Ensley SM (2018) Pyrethrins and pyrethroids. In: Gupta RC (ed) Veterinary toxicology. Academic Press, Elsevier, London, pp 515–520

    Google Scholar 

  • Ermakova IT, Shushkova TV, Sviridov AV, Zelenkova NF, Vinokurova NG, Baskunov BP, Leontievsky AA (2017) Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp. Arch Microbiol 199(5):665–675. https://doi.org/10.1007/s00203-017-1343-8

    Article  CAS  PubMed  Google Scholar 

  • Eto M (2018) Organophosphorus pesticides. CRC, Boca Raton, FL, 399 p

    Google Scholar 

  • Fan J, Yang G, Zhao H, Shi G, Geng Y, Hou T, Tao K (2012) Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol 58(4):263–271

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Nie Z, Die Q, Tian Y, Liu F, He J et al (2017) Organochlorine pesticides in soil, air, and vegetation at and around a contaminated site in southwestern China: concentration, transmission, and risk evaluation. Chemosphere 178:340–349

    Article  CAS  PubMed  Google Scholar 

  • Feng JC, Thompson DG (1990) Fate of glyphosate in a Canadian forest watershed. 2. Persistence in foliage and soils. J Agric Food Chem 38:1118–1125

    Article  CAS  Google Scholar 

  • Firdous S, Iqbal S, Anwar S (2017a) Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60381-3

  • Firdous S, Iqbal S, Anwar S, Jabeen H (2017b) Identification and analysis of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from glyphosate resistant Ochrobactrum intermedium Sq20. Pest Manag Sci 74:1184–1196. https://doi.org/10.1002/ps.4624

    Article  CAS  PubMed  Google Scholar 

  • Firdous S, Iqbal S, Anwar S, Jabeen H (2018) Identification and analysis of 5 enolpyruvylshikimate 3 phosphate synthase (EPSPS) gene from glyphosate resistant Ochrobactrum intermedium Sq20. Pest Manag Sci 74(5):1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Fonger GC, Hakkinen P, Jordan S, Publicker S (2014) The National Library of Medicine’s (NLM) Hazardous Substances Data Bank (HSDB): background, recent enhancements and future plans. Toxicology 325:209–216

    Article  CAS  PubMed  Google Scholar 

  • Fournier JC, Soulas G, Parekh NR (1996) Pesticide degradation in soils. In: Tarradellas J, Bitton G, Rossel D (eds) Soil ecotoxicology. CRC, p 85

    Google Scholar 

  • Funderburk HH, Bozarth GA (1967) Review of the metabolism and decompostion of diquat and paraquat. J Agric Food Chem 15:563–567

    Article  CAS  Google Scholar 

  • Gadkari D (1988) Effects of atrazine and paraquat on nitrifying bacteria. Arch Environ Contam Toxicol 17:443–447

    Article  CAS  Google Scholar 

  • Gao J, Liu L, Liu X, Lu J, Zhou H, Huang S et al (2008) Occurrence and distribution of organochlorine pesticides—lindane, p, p′-DDT, and heptachlor epoxide—in surface water of China. Environ Int 34:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • García-Delgado C, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2020) Organic carbon nature determines the capacity of organic amendments to adsorb pesticides in soil. J Hazard Mater 390:1–9

    Article  CAS  Google Scholar 

  • Garnier R, Bazire A, Chataigner D (2003) Effets sur la santé de l’utilisation professionnelle du paraquat. Arch des Mal Prof médecine du Trav 64:310–324

    Google Scholar 

  • Gastiazoro MP, Durando M, Milesi MM, Lorenz V, Vollmer G, Varayoud J et al (2020) Glyphosate induces epithelial mesenchymal transition-related changes in human endometrial Ishikawa cells via estrogen receptor pathway. Mol Cell Endocrinol 510:110841

    Article  CAS  PubMed  Google Scholar 

  • George J, Shukla Y (2011) Pesticides and cancer: insights into toxicoproteomic-based findings. J Proteomics 74:2713–2722

    Article  CAS  PubMed  Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup®herbicide. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Reviews of environmental contamination and toxicology, vol 167. Springer, New York, pp 35–120

    Google Scholar 

  • Gil H, Hong JR, Jang SH, Hong SY (2014) Diagnostic and therapeutic approach for acute paraquat intoxication. J Korean Med Sci 29:1441–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimsing AL, Borggaard OK (2001) Effect of KCl and CaCl2 as background electrolytes on the competitive adsorption of glyphosate and phosphate on goethite. Clays Clay Miner 49:270–275

    Article  CAS  Google Scholar 

  • Gimsing AL, Szilas C, Borggaard OK (2007) Sorption of glyphosate and phosphate by variable-charge tropical soils from Tanzania. Geoderma 138:127–132

    Article  CAS  Google Scholar 

  • Goel A, Singh O (2019) Herbicides poisoning: Paraquat and Diquat. In: Singh O, Juneja D (eds) Principles and practice of critical care toxicology. Jaypee Brothers Medical, New Delhi, p 312

    Google Scholar 

  • Gómez Ortiz AM, Okada E, Bedmar F, Costa JL (2017) Sorption and desorption of glyphosate in mollisols and ultisols soils of Argentina. Environ Toxicol Chem 36:2587–2592

    Article  CAS  PubMed  Google Scholar 

  • Gondar D, López R, Antelo J, Fiol S, Arce F (2012) Adsorption of paraquat on soil organic matter: effect of exchangeable cations and dissolved organic carbon. J Hazard Mater 235:218–223

    Article  CAS  PubMed  Google Scholar 

  • Grandcoin A, Piel S, Baures E (2017) AminoMethylPhosphonic acid (AMPA) in natural waters: its sources, behavior and environmental fate. Water Res 117:187–197

    Article  CAS  PubMed  Google Scholar 

  • Grung M, Lin Y, Zhang H, Steen AO, Huang J, Zhang G et al (2015) Pesticide levels and environmental risk in aquatic environments in China—a review. Environ Int 81:87–97

    Article  CAS  PubMed  Google Scholar 

  • Guimont S (2005) Devenir des pesticides dans les sols en fonction de l’état d’humidité et du mode de circulation de l’eau dans le sol. PhD thesis, National Polytechnic Institute of Lorraine, Lorraine, France

    Google Scholar 

  • Gupta M, Mathur S, Sharma TK, Rana M, Gairola A, Navani NK, Pathania R (2016) A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. J Hazard Mater 301:250–258

    Article  CAS  PubMed  Google Scholar 

  • Hadi F, Mousavi A, Noghabi KA, Tabar HG, Salmanian AH (2013) New bacterial strain of the genus Ochrobactrum with glyphosatedegrading activity. J Environ Sci Health B 48(3):208–213

    Article  CAS  PubMed  Google Scholar 

  • Hall JC, Donnelly-Vanderloo MJ, Hume DJ (2018) Triazine-resistant crops: the agronomic impact and physiological consequences of chloroplast mutation. In: Duke SO (ed) Herbicide-resistant crops. CRC, Boca Raton, pp 107–126

    Chapter  Google Scholar 

  • Han X, Yuan R, Wang GQ, Zhang CJ (2014) Isolation of paraquat degrading bacteria and identification of degradation characteristics. Anhui Agricu Sci Bull 20:38–39. https://doi.org/10.16377/j.cnki.issn1007-7731.2014.08.004

    Article  Google Scholar 

  • Hance RJ, Byast TH, Smith PD (1980) Apparent decomposition of paraquat in soil. Soil Biol Biochem 12:447–448

    Article  CAS  Google Scholar 

  • Hayes WJ, Laws ER, Clarkson TW (1991) Handbook of pesticide toxicology; Classes of Pesticides, vol 2. Academic Press, San Diego, p 1576

    Google Scholar 

  • Helander M, Saloniemi I, Saikkonen K (2012) Glyphosate in northern ecosystems. Trends Plant Sci 17:569–574

    Article  CAS  PubMed  Google Scholar 

  • Hermansen C, Norgaard T, de Jonge LW, Moldrup P, Müller K, Knadel M (2020) Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis—NIR spectroscopy. Geoderma 360:114009

    Article  CAS  Google Scholar 

  • Holten R, Larsbo M, Jarvis N, Stenrød M, Almvik M, Eklo OM (2019) Leaching of five pesticides of contrasting mobility through frozen and unfrozen soil. Vadose Zo J 18:1–10

    Article  CAS  Google Scholar 

  • Houbraken M, van den Berg F, Butler Ellis CM, Dekeyser D, Nuyttens D, De Schampheleire M et al (2016) Volatilisation of pesticides under field conditions: inverse modelling and pesticide fate models. Pest Manag Sci 72:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhan H, Bhatt P, Chen S (2019) Paraquat degradation from contaminated environments: current achievements and perspectives. Front Microbiol 10:1–9

    Article  Google Scholar 

  • IARC (2018) Monographs: GLYPHOSATE. file:///C:/Users/pc/Desktop/biblio/Ref/IARCMONOGRAPH.pdf. Accessed 28 Jul 2019

    Google Scholar 

  • Ibáñez M, Pozo ÓJ, Sancho JV, López FJ, Hernández F (2005) Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A 1081:145–155

    Article  CAS  PubMed  Google Scholar 

  • Iori S, Dalla Rovere G, Ezzat L, Smits M, Ferraresso SS, Babbucci M et al (2020) The effects of glyphosate and AMPA on the mediterranean mussel Mytilus galloprovincialis and its microbiota. Environ Res 182:108984

    Article  CAS  PubMed  Google Scholar 

  • Jacob GS, Schaefer J, Stejskal EO, McKay RA (1985) Solid-state NMR determination of glyphosate metabolism in a Pseudomonas sp. J Biol Chem 260:5899–5905

    Article  CAS  PubMed  Google Scholar 

  • Jacob GS, Garbow JR, Schaefer J, Kishore GM (1987) Solid–state NMR studies of regulation of N-(Phosphonomethyl)glycine and glycine metabolism in Pseudomonas sp. strain PG2982. J Biol Chem 262:1552–1557

    Article  CAS  PubMed  Google Scholar 

  • Jacob GS, Garbow JR, Hallas LE, Kimack NM, Kishore GM, Schaefer J (1988) Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol 54:2953–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal DK, Verma JP, Yadav J (2017) Microbe induced degradation of pesticides in agricultural soils. In: Singh S (ed) Microbe-induced degradation of pesticides. Environmental science and engineering. Springer, Cham, pp 167–189

    Chapter  Google Scholar 

  • Kaczmarek DK, Rzemieniecki T, Marcinkowska K, Pernak J (2019) Synthesis, properties and adjuvant activity of docusate-based ionic liquids in pesticide formulations. J Ind Eng Chem 78:440–447

    Article  CAS  Google Scholar 

  • Kadala PA (2011) Action des pyréthrinoïdes sur le canal sodique activé par le potentiel des neurones du système olfactif de l'abeille domestique Apis mellifera. PhD thesis, University Of Avignon, Avignon, France

    Google Scholar 

  • Kah M, Brown CD (2007) Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere 68:1335–1343

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Beulke S, Brown CD (2007) Factors influencing degradation of pesticides in soil. J Agric Food Chem 55:4487–4492

    Article  CAS  PubMed  Google Scholar 

  • Karasali H, Marousopoulou A, Machera K (2016) Pesticide residue concentration in soil following conventional and low-input crop management in a Mediterranean Agro-Ecosystem, in Central Greece. Sci Total Environ 541:130–142

    Article  CAS  PubMed  Google Scholar 

  • Karasali H, Pavlidis G, Marousopoulou A (2019) Investigation of the presence of glyphosate and its major metabolite AMPA in Greek soils. Environ Sci Pollut Res 26:36308–36321

    Article  CAS  Google Scholar 

  • Kaur G (2019) Herbicides and its role in induction of oxidative stress—a review. Int J Environ Agric Biotechnol 4:995–1004

    Google Scholar 

  • Khan SU (1974) Determination of diquat and paraquat residues in soil by gas chromatography. J Agric Food Chem 22:863–867

    Article  CAS  PubMed  Google Scholar 

  • Khan SU (1980) Pesticides in the soil environment. Elsevier, New York, p 248

    Google Scholar 

  • Khan SU, Marriage PB, Saidak WJ (1975) Residues of paraquat in an orchard soil. Can J Soil Sci 55(1):73–75

    Article  CAS  Google Scholar 

  • Khan M, Gassman M, Haque R (1976) Biodegradation of pesticides. Chemtech 6:62–69

    CAS  Google Scholar 

  • Khedr T, Hammad AA, Elmarsafy AM, Halawa E, Soliman M (2019) Degradation of some organophosphorus pesticides in aqueous solution by gamma irradiation. J Hazard Mater 373:23–28

    Article  CAS  PubMed  Google Scholar 

  • Kinkela D (2011) DDT and the American century: global health, environmental politics, and the pesticide that changed the world. The University of North Carolina Press, Chapel Hill, p 272

    Google Scholar 

  • Knight BAG, Denny PJ (1970) The interaction of paraquat with soil: adsorption by an expanding lattice clay mineral. Weed Res 10:40–48

    Article  CAS  Google Scholar 

  • Kopytko M, Chalela G, Zauscher F (2002) Biodegradation of two commercial herbicides (Gramoxone and Matancha) by the bacteria Pseudomonas putida. Electron J Biotechnol 5(2):0–1

    Article  CAS  Google Scholar 

  • Kryuchkova YV, Burygin GL, Gogoleva NE, Gogolev YV, Chernyshova MP, Makarov OE et al (2014) Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol Res 169:99–105

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kaushik G, Dar MA, Nimesh S, Lopez-Chuken UJ, Villarreal-Chiu JF (2018) Microbial degradation of organophosphate pesticides: a review. Pedosphere 28:190–208

    Article  CAS  Google Scholar 

  • Laitinen P, Siimes K, Rämö S, Jauhiainen L, Eronen L, Oinonen S et al (2008) Effects of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate-ammonium. J Environ Qual 37:830–838

    Article  CAS  PubMed  Google Scholar 

  • Larson SJ (2019) Pesticides in surface waters: distribution, trends, and governing factors, vol 3. CRC, Boca Raton, FL, 400 p

    Book  Google Scholar 

  • Lautre Y (2019) Demandons l’interdiction des pesticides à base de glyphosate: La France doit respecter son engagement de sortir du glyphosate en 3 ans, au plus tard fin 2020. http://yonnelautre.fr/spip.php?article4073 Accessed 23 Sept 2020

  • Le Bars M, Sidibe F, Mandart E, Fabre J, Le Grusse P, Diakite CH (2020) Évaluation des risques liés à l’utilisation de pesticides en culture cotonnière au Mali. Cah Agric 29:4

    Article  Google Scholar 

  • Leadbetter ER, Foster JW (1959) Incorporation of molecular oxygen in bacterial cells utilizing hydrocarbons for growth. Nature 184:1428–1429

    Article  CAS  PubMed  Google Scholar 

  • Leaper C, Holloway PJ (2000) Adjuvants and glyphosate activity. Pest Manag Sci Former Pest Sci 56:313–319

    Article  CAS  Google Scholar 

  • Leonard RA, Langdale GW, Fleming WG (1979) Herbicide runoff from upland piedmont watersheds—data and implications for modeling pesticide transport. J Environ Qual 8:223–229

    Article  CAS  Google Scholar 

  • Leong WH, Teh SY, Hossain MM, Nadarajaw T, Zabidi-Hussin Z, Chin SY et al (2020) Application, monitoring and adverse effects in pesticide use: the importance of reinforcement of Good Agricultural Practices (GAPs). J Environ Manage 260:109987

    Article  CAS  PubMed  Google Scholar 

  • Lerbs W, Stock M, Parthier B (1990) Physiological aspects of glyphosate degradation in Alcaligenes sp. strain GL. Arch Microbiol 153(2):146–150

    Article  CAS  Google Scholar 

  • Li W, Lybrand DB, Xu H, Zhou F, Last RL, Pichersky E (2020a) A trichome-specific, plastid-localized Tanacetum cinerariifolium Nudix protein hydrolyzes the natural pyrethrin pesticide biosynthetic intermediate trans-Chrysanthemyl Diphosphate. Front Plant Sci 11:482

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu L, Kuang H, Xu C (2020b) Preparing monoclonal antibodies and developing immunochromatographic strips for paraquat determination in water. Food Chem 311:125897

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lonappan L, Brar SK, Yang S (2018) Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci Total Environ 645:60–70

    Article  CAS  PubMed  Google Scholar 

  • Liu CM, McLean P, Sookdeo C, Cannon F (1991) Degradation of the herbicide glyphosate by members of the family rhizobiaceae. Appl Environ Microbiol 57(6):1799–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney K (2018) The Impact of Glyphosate Exposure on Leukemia and Lymphoma Cases in the State of Iowa, Thesis, Carthage College, Kenosha, Wisconsin, United States

    Google Scholar 

  • Maldani M, Dekaki EM, Nassiri L, Ibijbijen J (2017) State of art on the use of pesticides in Meknes Region, Morocco. Am J Agric Sci 4:138–148

    Google Scholar 

  • Maldani M, Ben Messaoud B, Nassiri L, Ibijbijen J (2018) Influence of paraquat on four rhizobacteria strains: Pantoea agglomerans, Rhizobium nepotum, Rhizobium radiobacter and Rhizobium tibeticum. Open Environ Sci 10:48–55

    Article  Google Scholar 

  • Maldani M, Aliyat FZ, Cappello S, Morabito M, Giarratana F, Nassiri L, Ibijbijen A (2021) Effect of glyphosate and paraquat on seed germination, amino acids, photosynthetic pigments and plant morphology of Vicia faba, Phaseolus vulgaris and Sorghum bicolor. Environ Sust. https://doi.org/10.1007/s42398-021-00170-0

  • Mamouni A, Mansour M, Schmitt P (2018) Abiotic degradation pathways of selected pesticides in the presence of oxygen species in aqueous solutions. In: Mansour M (ed) Fate and prediction of environmental chemicals in soils, plants, and aquatic systems. CRC, Boca Raton, FL, pp 253–274

    Chapter  Google Scholar 

  • Mamy L, Barriuso E (2005) Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 61:844–855

    Article  CAS  PubMed  Google Scholar 

  • Mañas F, Peralta L, Raviolo J, Ovando HG, Weyers A, Ugnia L et al (2009) Genotoxicity of AMPA, the environmental metabolite of glyphosate, assessed by the Comet assay and cytogenetic tests. Ecotoxicol Environ Saf 72:834–837

    Article  CAS  PubMed  Google Scholar 

  • Martin MJ, Host GE, Lenz KE, Isebrands JG (2001) Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture. Environ Pollut 115:425–436

    Article  CAS  PubMed  Google Scholar 

  • Martinez MA, Rodríguez JL, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Maximiliano JE et al (2020) Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ Int 135:105414

    Article  CAS  PubMed  Google Scholar 

  • Martini SA, Phillips M (2009) Nutrition and food commodities in the 20th century. J Agric Food Chem 57:8130–8135

    Article  CAS  PubMed  Google Scholar 

  • Martin-Laurent F, Therond O (2017) Comment les sols atténuent-ils naturellement les pesticides? Biofutur 36:54

    Google Scholar 

  • Mawussi G (2008) Bilan environnemental de l’utilisation de pesticides organochlorés dans les cultures de coton, café et cacao au Togo et recherche d’alternatives par l’évaluation du pouvoir insecticide d’extraits de plantes locales contre le scolyte du café (Hypothenemus hampei Ferrari). PhD Thesis, University Of Toulouse, Toulouse, France

    Google Scholar 

  • Maya F, Estela JM, Cerdà V (2011) Improved spectrophotometric determination of paraquat in drinking waters exploiting a Multisyringe liquid core waveguide system. Talanta 85:588–595

    Article  CAS  PubMed  Google Scholar 

  • McAuliffe KS, Hallas LE, Kulpa CF (1990) Glyphosate degradation byAgrobacterium radiobacter isolated from activated sludge. J Ind Microbiol 6:219–221

    Article  CAS  Google Scholar 

  • Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M (2020) Pesticides in the urban environment: a potential threat that knocks at the door. Sci Total Environ 711:134612

    Article  CAS  Google Scholar 

  • Mesnage R, Bernay B, Séralini GE (2013) Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313:122–128

    Article  CAS  PubMed  Google Scholar 

  • Moneke AN, Okpala GN, Anyanwu CU (2010) Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. Afr J Biotechnol 26:4067–4074

    Google Scholar 

  • Moore JK, Braymer HD, Larson AD (1983) Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl Environ Microbiol 46(2):316–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-González D, Pérez-Ortega P, Gilbert-López B, Molina-Díaz A, García-Reyes JF, Fernández-Alba AR (2017) Evaluation of nanoflow liquid chromatography high resolution mass spectrometry for pesticide residue analysis in food. J Chromatogr A 1512:78–87

    Article  CAS  PubMed  Google Scholar 

  • Munira S, Farenhorst A, Flaten D, Grant C (2016) Phosphate fertilizer impacts on glyphosate sorption by soil. Chemosphere 153:471–477

    Article  CAS  PubMed  Google Scholar 

  • Nandula VK (2010) Glyphosate resistance in crops and weeds: history, development, and management. Wiley, Hoboken, NJ, 321 pp

    Book  Google Scholar 

  • Nantia EA, Moreno-González D, Manfo FP, Sonchieu J, Moundipa PF, García-Campaña AM et al (2017) Characterization of carbamate pesticides in natural water from Cameroon. Anal Lett 50:1397–1409

    Article  CAS  Google Scholar 

  • Narenderan ST, Meyyanathan SN, Karri VVSR (2019) Experimental design in pesticide extraction methods: a review. Food Chem 289:384–395

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1993) Managing global genetic resources: agricultural crop issues and policies. National Academies Press, Washington, DC, p 480

    Google Scholar 

  • Nauen R, Slater R, Sparks TC, Elbert A, Mccaffery A (2019) IRAC: insecticide resistance and mode-of-action classification of insecticides. Mod Crop Prot Compd 3:995–1012

    CAS  Google Scholar 

  • Navarro S, Vela N, Navarro G (2007) An overview on the environmental behaviour of pesticide residues in soils. Spanish J Agric Res:357–375

    Google Scholar 

  • Niemann L, Sieke C, Pfeil R, Solecki R (2015) A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J für Verbraucherschutz und Leb 10:3–12

    Article  CAS  Google Scholar 

  • Norgaard T, Moldrup P, Ferré TP, Olsen P, Rosenbom AE, de Jonge LW (2014) Leaching of glyphosate and aminomethylphosphonic acid from an agricultural field over a twelve-year period. Vadose Zo J 13:1–18

    CAS  Google Scholar 

  • Nwokoro O, Dibua MEU (2015) Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis. Arch Ind Hyg Toxicol 65(1):113–119. https://doi.org/10.2478/10004-1254-65-2014-2449

    Article  CAS  Google Scholar 

  • Obojska A, Lejczak B, Kubrak M (1999) Degradation of phosphonates by Streptomycete isolates. Appl Microbiol Biotechnol 51(6):872–876

    Article  CAS  PubMed  Google Scholar 

  • Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G (2002) Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68(4):2081–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obuotor TM, Yahaya PB, Akinloye OA, Sakariyau AO (2016) Biodegradation of paraquat dichloride-contaminated soil with fermented corn steep. Uniosun J Sci 1:67–73

    Google Scholar 

  • Okada E, Costa JL, Bedmar F (2019) Glyphosate dissipation in different soils under no-till and conventional tillage. Pedosphere 29:773–783

    Article  Google Scholar 

  • Okada E, Allinson M, Barral MP, Clarke B, Allinson G (2020) Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne, Australia. Water Res 168:1–8

    Article  CAS  Google Scholar 

  • Ololade OO, Aiyesanmi AF, Okoronkwo AE, Ololade IA, Adanigbo P (2019) Influence of electrolyte composition and pH on glyphosate sorption by cow-dung amended soil. J Environ Sci Health Pt B 54:758–769

    Article  CAS  Google Scholar 

  • Omakor JE, Onyido I, Buncel E (2001) Mechanisms of abiotic degradation and soil--water interactions of pesticides and other hydrophobic organic compounds. Part 3. Nucleophilic displacement at the phosphorus centre of the pesticide fenitrothion [O, O-dimethyl O-(3-methyl-4-nitrophenyl) phosph]. J Chem Soc Perkin Trans 2:324–330

    Article  Google Scholar 

  • Oudejans L, Mysz A, Snyder EG, Wyrzykowska-Ceradini B, Nardin J, Tabor D et al (2020) Remediating indoor pesticide contamination from improper pest control treatments: persistence and decontamination studies. J Hazard Mater 397:1–11

    Article  CAS  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN et al (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461

    Article  CAS  Google Scholar 

  • Padilla JT, Selim HM (2020) Environmental behavior of glyphosate in soils. In: Donald LS (ed) Advances in Agronomy, vol 159. Elsevier, Amsterdam, pp 1–34

    Google Scholar 

  • Pateiro-Moure M, Pérez-Novo C, Arias-Estévez M, Rial-Otero R, Simal-Gándara J (2009) Effect of organic matter and iron oxides on quaternary herbicide sorption—desorption in vineyard-devoted soils. J Colloid Interface Sci 333:431–438

    Article  CAS  PubMed  Google Scholar 

  • Pedersen KE, Pedersen NN, Meyling NV, Fredensborg BL, Cedergreen N (2020) Differences in life stage sensitivity of the beetle Tenebrio molitor towards a pyrethroid insecticide explained by stage-specific variations in uptake, elimination and activity of detoxifying enzymes. Pestic Biochem Physiol 162:113–121

    Article  CAS  PubMed  Google Scholar 

  • Peñaloza-Vazquez A, Mena GL, Herrera-Estrella L, Bailey AM (1995) Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol 61(2):538–543

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira RC, Anizelli PR, Di Mauro E, Valezi DF, da Costa ACS, Zaia CTB et al (2019) The effect of pH and ionic strength on the adsorption of glyphosate onto ferrihydrite. Geochem Trans 20:1–14

    Article  CAS  Google Scholar 

  • Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66

    Article  CAS  PubMed  Google Scholar 

  • Pessagno RC, Sánchez RMT, dos Santos AM (2008) Glyphosate behavior at soil and mineral—water interfaces. Environ Pollut 153:53–59

    Article  CAS  PubMed  Google Scholar 

  • Piccolo A, Celano G, Arienzo M, Mirabella A (1994) Adsorption and desorption of glyphosate in some European soils. J Environ Sci Health Pt B 29:1105–1115

    Article  Google Scholar 

  • Pierre M, Jean-Baptiste AA, Sébastien DD (2018) Organochlorine pesticides contamination in human milk in Abidan (Côte d’Ivoire). J Toxicol Environ Health Sci 10:10–14

    Article  CAS  Google Scholar 

  • Pino N, Peñuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeter Biodegr 65:827–831

    Article  CAS  Google Scholar 

  • Pipke R, Amrhein N, Jacob GS, Schaefer J, Kishore GM (1987a) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. FEBS J 165(2):267–273

    CAS  Google Scholar 

  • Pipke R, Schulz A, Amrhein N (1987b) Uptake of glyphosate by an Arthrobacter sp. Appl Environ Microbiol 53(5):974–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizzutti IR, Vela GME, de Kok A, Scholten JM, Dias JV, Cardoso CD et al (2016) Determination of paraquat and diquat: LC-MS method optimization and validation. Food Chem 209:248–255

    Article  CAS  PubMed  Google Scholar 

  • Poirier L, Jacquet P, Elias M, Daudé D, Chabrière E (2017) La décontamination des organophosphorés: vers de nouvelles alternatives. In: Annales pharmaceutiques francaises, vol 75(3). Elsevier, Masson, 226, p 209

    Google Scholar 

  • Pomeroy A (2012) Biochemical mechanisms of paraquat toxicity. Academic Press, London, 240 pp

    Google Scholar 

  • Qiang H, Zhong X, Jing R, Jin G (2002) Progress of pyrethroids insecticides. J Qingdao Inst Chem Technol 1

    Google Scholar 

  • Qu C, Albanese S, Lima A, Li J, Doherty AL, Qi S et al (2017) Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy. Environ Pollut 231:1497–1506

    Article  CAS  PubMed  Google Scholar 

  • Radif HM, Albaayit SF (2019) Isolation, identification and role of glyphosate-degrading bacteria from soils of Baghdad. Eurasia Proc Sci Technol Eng Math (EPSTEM) 6:135–137

    Google Scholar 

  • Rainaud PL (2013) Evaluation des risques à long terme des herbicides à base de glyphosate sur la santé humaine. PhD Thesis, University of Picardy Jules Verne, Amiens, France

    Google Scholar 

  • Ramchandra AM, Chacko B, Victor PJ (2019) Pyrethroid poisoning. Indian J Crit Care Med 23(4):267–271

    Google Scholar 

  • Ramya K, Vasudevan N (2020) Biodegradation of synthetic pyrethroid pesticides under saline conditions by a novel halotolerant Enterobacter ludwigii. Desalin Water Treat 173:255–266

    Article  CAS  Google Scholar 

  • Rani M, Shanker U, Jassal V (2017) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manage 190:208–222

    Article  CAS  PubMed  Google Scholar 

  • Rashidipour M, Heydari R, Maleki A, Mohammadi E, Davari B (2019) Salt-assisted liquid–liquid extraction coupled with reversed-phase dispersive liquid–liquid microextraction for sensitive HPLC determination of paraquat in environmental and food samples. J Food Meas Charact 13:269–276

    Article  Google Scholar 

  • Reemtsma T, Alder L, Banasiak U (2013) Multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography–mass spectrometry. J Chromatogr A 1271:95–104

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Zeng G, Tang L, Wang J, Wan J, Liu Y et al (2018) Sorption, transport and biodegradation—an insight into bioavailability of persistent organic pollutants in soil. Sci Total Environ 610:1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Romina SM, Laura LV, Lozano VL, Vera MS, Ferraro M, Izaguirre I et al (2020) New findings on the effect of glyphosate on autotrophic and heterotrophic picoplankton structure: a microcosm approach. Aquat Toxicol 222:1–10

    Google Scholar 

  • Sarkar B, Mukhopadhyay R, Mandal A, Mandal S, Vithanage M, Biswas JK (2020) Sorption and desorption of agro-pesticides in soils. In: Prasad MNV (ed) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Elsevier, pp 189–205

    Chapter  Google Scholar 

  • Schrack D, Coquil X, Ortar A, Benoît M (2009) Persistence of pesticides in water from farm plots recently converted to organic farming. Carrefours l’Innovation Agron 4:259–268

    Google Scholar 

  • Selvapandiyan A, Bhatnagar RK (1994) Isolation of a glyphosatemetabolising Pseudomonas: detection, partial purification and localisation of carbon-phosphorus lyase. Appl Microbiol Biotechnol 40(6):876–882

    Article  CAS  Google Scholar 

  • Sharifi Y, Pourbabaei AA, Javadi A, Abdolmohammad MH, Saffari M, Morovvati A (2015) Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake, Iran. Environ Health Eng Manag J 2:31–36

    CAS  Google Scholar 

  • Sharma PK, Mayank M, Ojha CSP, Shukla SK (2020) A review on groundwater contaminant transport and remediation. ISH J Hydraul Eng 26:112–121

    Google Scholar 

  • Shawish HMA, Ghalwa NA, Hamada M, Basheer AH (2012) Modified carbon paste electrode for potentiometric determination of diquat dibromide pesticide in water and urine samples. Mater Sci Eng C 32(2):140–145

    Article  CAS  Google Scholar 

  • Shivhare P, Gupta VK (1991) Spectrophotometric method for the determination of paraquat in water, grain and plant materials. Analyst 116:391–393

    Article  CAS  PubMed  Google Scholar 

  • Silva V, Mol HGJ, Zomer P, Tienstra M, Ritsema CJ, Geissen V (2019) Pesticide residues in European agricultural soils—a hidden reality unfolded. Sci Total Environ 653:1532–1545

    Article  CAS  PubMed  Google Scholar 

  • Simonsen L, Fomsgaard IS, Svensmark B, Spliid NH (2008) Fate and availability of glyphosate and AMPA in agricultural soil. J Environ Sci Health Pt B 43:365–375

    Article  CAS  Google Scholar 

  • Singh T, Singh DK (2017) Phytoremediation of organochlorine pesticides: concept, method, and recent developments. Int J Phytoremediation 19:834–843

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh SK, Chaubey J, Arora H, Bhandari K, Vyas A (2019) Inter-state mobility of pesticide leachate in underground water. AGUFM 2019:H41J

    Google Scholar 

  • Singh S, Kumar V, Datta S, Wani AB, Dhanjal DS, Romero R et al (2020) Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review. Environ Chem Lett:1–40

    Google Scholar 

  • Sousa S, Maia ML, Correira-Sá L, Fernandes VC, Delerue-Matos C, Calhau C et al (2020) Chemistry and toxicology behind insecticides and herbicides. In: Rakhimol KR, Thomas S, Volova T, Jayachandran K (eds) Controlled release of pesticides for sustainable agriculture. Springer, Cham, pp 59–109

    Chapter  Google Scholar 

  • Sprankle P, Meggitt WF, Penner D (1975) Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Sci 23:229–234

    Article  CAS  Google Scholar 

  • Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    Article  PubMed  Google Scholar 

  • Sviridov A (2012) Enzyme systems of organophosphonate catabolism of soil bacteria Achromobacter sp. and Ochrobactrum anthropi GPK3. PhD thesis (in Russian). Pushchinoa 152:120–132

    Google Scholar 

  • Sviridov AV, Shushkova TV, Zelenkova NF, Vinokurova NG, Morgunov IG, Ermakova IT, Leontievsky AA (2012) Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl Microbiol Biotechnol 93(2):787–796

    Article  CAS  PubMed  Google Scholar 

  • Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Leontievsky AA (2014) Glyphosate: safety risks, biodegradation, and bioremediation. In: Cao G, Orrù R (eds) Current environmental issues and challenges. Springer, Dordrecht, pp 183–195

    Chapter  Google Scholar 

  • Tamano H, Nishio R, Morioka H, Furuhata R, Komata Y, Takeda A (2019) Paraquat as an environmental risk factor in Parkinson’s disease accelerates age-related degeneration via rapid influx of extracellular Zn 2+ into Nigral dopaminergic neurons. Mol Neurobiol 56:7789–7799

    Article  CAS  PubMed  Google Scholar 

  • Tankiewicz M, Fenik J, Biziuk M (2011) Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review. Talanta 86:8–22

    Article  CAS  PubMed  Google Scholar 

  • Talbot HW, Johnson LM, Munnecke DM (1984) Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Curr Microbiol 10(5):255–259

    Article  CAS  Google Scholar 

  • Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M et al (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119:866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teerakun M, Reungsang A, Chaowarat M, Saraphirom P (2020) Optimization of Paraquat degradation with microbial consortium from contaminated soil using statistic method. Int J 18:73–79

    Google Scholar 

  • Testud F, Grillet JP (2007) Insecticides organophosphorés, carbamates, pyréthrinoïdes de synthèse et divers. Encycl Med Chir 2:1–24

    Google Scholar 

  • Torstensson L (1985) Behaviour of glyphosate in soils and its degradation. In: Herbic glyphosate, pp 137–150

    Google Scholar 

  • Toss V, Leito I, Yurchenko S, Freiberg R, Kruve A (2017) Determination of glyphosate in surface water with high organic matter content. Environ Sci Pollut Res 24:7880–7888

    Article  CAS  Google Scholar 

  • Tsai WT, Lai CW, Hsien KJ (2003) Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. J Colloid Interface Sci 263:29–34

    Article  CAS  PubMed  Google Scholar 

  • Tsao YC, Lai YC, Liu HC, Liu RH, Lin DL (2016) Simultaneous determination and quantitation of paraquat, diquat, glufosinate and glyphosate in postmortem blood and urine by LC--MS-MS. J Anal Toxicol 40:427–436

    Article  CAS  PubMed  Google Scholar 

  • Tu CM, Bollen WB (1968) Interaction between paraquat and microbes in soils. Weed Res 8:38–45

    Article  CAS  Google Scholar 

  • Tyagi N, Singh R (2020) Paraquat-induced oxidative stress and lung inflammation. In: Chakraborti S, Parinandi N, Ghosh R, Ganguly N, Chakraborti T (eds) Oxidative stress in lung diseases. Springer, Singapore, pp 245–270

    Chapter  Google Scholar 

  • US EPA (1987) Unfinished business: a comparative assessment of environmental problems, EPA report EPA-230/2-87-025. US Environmental Protection Agency, Washington, DC. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=2000CRX3.PDF

    Google Scholar 

  • USEPAO (2004) Overview of the ecological risk assessment process in the Office of Pesticide Programs, US Environmental Protection Agency: Endangered and Threatened Species Effects Determinations. DIANE Publishing, Washington, DC. 92 p

    Google Scholar 

  • Van der Hoff GR, van Zoonen P (1999) Trace analysis of pesticides by gas chromatography. J Chromatogr A 843:301–322

    Article  PubMed  Google Scholar 

  • Vereecken H (2005) Mobility and leaching of glyphosate: a review. Pest Manag Sci Former Pest Sci 61:1139–1151

    Article  CAS  Google Scholar 

  • Villamizar ML, Brown CD (2016) Modelling triazines in the valley of the River Cauca, Colombia, using the annualized agricultural non-point source pollution model. Agric Water Manag 177:24–36

    Article  Google Scholar 

  • Villarreal-Chiu JF (2012) Organic phosphonate metabolism by marine bacteria. PhD Thesis, Queen’s University Belfast, Belfast, Royaume-Uni

    Google Scholar 

  • Vinten AJA, Yaron B, Nye PH (1983) Vertical transport of pesticides into soil when adsorbed on suspended particles. J Agric Food Chem 31:662–664

    Article  CAS  Google Scholar 

  • Vryzas Z (2018) Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Curr Opin Environ Sci Health 4:5–9

    Article  Google Scholar 

  • Vytvras K, Šimǐčkovǎ-Štajerova B (1989) Potentiometric ion-pair formation titrations of bisquaternary cations: determination of diquat and paraquat. Anal Chim Acta 226:177–182

    Article  Google Scholar 

  • Wackett LP, Shames SL, Venditti CP, Walsh CT (1987) Bacterial carbonphosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism. J Bacteriol 169(2):710–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner SL (1983) Clinical toxicology of agricultural chemicals. Noyes Data Corporation, Park Ridge, NJ, p 306

    Google Scholar 

  • Wang S, Liu B, Yuan D, Ma J (2016) A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection. Talanta 161:700–706

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Yuan Y, Yen H, Grieneisen M, Arnold J, Wang D et al (2019) A review of pesticide fate and transport simulation at watershed level using SWAT: current status and research concerns. Sci Total Environ 669:512–526

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Yu C, Chu Q, Wang F, Lan T, Wang J (2020) Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere 244:1–12

    Google Scholar 

  • Wang XQ, Liu J, Zhang N, Yang H (2020) Adsorption, mobility, biotic and abiotic metabolism and degradation of pesticide exianliumi in three types of farmland. Chemosphere 254:1–12

    Google Scholar 

  • Weber JB (2018) Properties and behavior of pesticides in soil. In: Richard CH, Daniel JS (eds) Mechanisms of pesticide movement into ground water. CRC, Boca Raton, pp 15–42

    Chapter  Google Scholar 

  • Weber JB, Weed SB (1968) Adsorption and desorption of diquat, paraquat, and prometone by montmorillonitic and kaolinitic clay minerals. Soil Sci Soc Am J 32(4):485–487

    Article  CAS  Google Scholar 

  • Weber JB, Perry PW, Upchurch RP (1965) The influence of temperature and time on the adsorption of paraquat, diquat, 2, 4-D and prometone by clays, charcoal, and an anion-exchange resin 1. Soil Sci Soc Am J 29:678–688

    Article  CAS  Google Scholar 

  • Weidel H, Russo M (1882) Studies on the pyridine. Monthly notebooks for chemistry and related parts of other sciences 3(1):850-885

    Google Scholar 

  • WHO (1994) Glyphosate. International Program on Chemical Safety. 67 p

    Google Scholar 

  • WHO (2009) The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. World Health Organization, International Programme on Chemical Safety, Geneva

    Google Scholar 

  • WHO (2017) Manuel sur l’élaboration et l’utilisation des spécifications FAO/OMS pour les pesticides, Rome, 318 p

    Google Scholar 

  • Woźniak E, Reszka E, Jabłońska E, Mokra K, Balcerczyk A, Huras B (2020) The selected epigenetic effects of aminomethylphosphonic acid, a primary metabolite of glyphosate on human peripheral blood mononuclear cells (in vitro). Toxicol In Vitro 66:1–8

    Article  CAS  Google Scholar 

  • Wu CY, Liu JK, Chen SS, Deng X, Li QF (2013) Isolation and characterization of paraquat-degrading extracellular humus-reducing bacteria from vegetable field. Adv Mater Res 807–809:1026–1030. https://doi.org/10.4028/www.scientific.net/amr.807-809.1026

    Article  Google Scholar 

  • Xiang Y, Lu X, Yue J, Zhang Y, Sun X, Zhang G et al (2020) Stimuli-responsive hydrogel as carrier for controlling the release and leaching behavior of hydrophilic pesticide. Sci Total Environ 722:137811

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Sun QJ, Lan JCW, Chen WM, Hsueh CC, Chen BY (2019) Exploring the glyphosate-degrading characteristics of a newly isolated, highly adapted indigenous bacterial strain, Providencia rettgeri GDB 1. J Biosci Bioeng 128(1):80–87

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y, Hu C, Wang Y, Wang E (2004) Preparation of surface modifications of mesoporous titania with monosubstituted Keggin units and their catalytic performance for organochlorine pesticide and dyes under UV irradiation. Appl Catal A Gen 273:201–210

    Article  CAS  Google Scholar 

  • Yao F, Liu H, Wang G, Du L, Yin X, Fu Y (2013) Determination of paraquat in water samples using a sensitive fluorescent probe titration method. J Environ Sci 25:1245–1251

    Article  CAS  Google Scholar 

  • Yavari S, Sapari NB, Malakahmad A, Razali MAB, Gervais TS, Yavari S (2020) Adsorption–desorption behavior of polar imidazolinone herbicides in tropical paddy fields soils. Bull Environ Contam Toxicol 104:121–127

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Cairns A, Powles S (2007) Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225:499–513

    Article  CAS  PubMed  Google Scholar 

  • Yu XM, Yu T, Yin GH, Dong QL, An M, Wang HR, Ai CX (2015) Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet Mol Res 14(4):14717–14730

    Article  CAS  PubMed  Google Scholar 

  • Zbair M, Anfar Z, Ahsaine HA, Khallok H (2019) Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed. RSC Adv 9:1084–1094

    Article  CAS  Google Scholar 

  • Zhan H, Feng Y, Fan X, Chen S (2018) Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol 102:5033–5043

    Article  CAS  PubMed  Google Scholar 

  • Zhang W (2018) Global pesticide use: profile, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci 8:1–27

    Google Scholar 

  • Zhang L, Rana I, Shaffer RM, Taioli E, Sheppard L (2019) Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: a meta-analysis and supporting evidence. Mutat Res Mutat Res 781:186–206

    Article  CAS  Google Scholar 

  • Zhao B, Zhang J, Gong J, Zhang H, Zhang C (2009) Glyphosate mobility in soils by phosphate application: laboratory column experiments. Geoderma 149:290–297

    Article  CAS  Google Scholar 

  • Zhao F, Wang S, She Y, Zhang C, Zheng L, Jin M et al (2017) Subcritical water extraction combined with molecular imprinting technology for sample preparation in the detection of triazine herbicides. J Chromatogr A 1515:17–22

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Liu W, Chen J, Bruijnzeel LA, Mao Z, Yang X et al (2019) Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a review of evidence and processes. Plant and Soil:1–42

    Google Scholar 

  • Zouaoui K, Dulaurent S, Gaulier JM, Moesch C, Lachâtre G (2013) Determination of glyphosate and AMPA in blood and urine from humans: About 13 cases of acute intoxication. Forensic Sci Int 226:20–25

    Article  CAS  Google Scholar 

  • Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A et al (2019) Fungicides: an overlooked pesticide class? Environ Sci Technol 53:3347–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Ibijbijen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maldani, M., Nassiri, L., Ibijbijen, J. (2022). Biodegradation and Remediation of Pesticides in Contaminated Agroecosystems: Special Reference to Glyphosate and Paraquat. In: Arora, N.K., Bouizgarne, B. (eds) Microbial BioTechnology for Sustainable Agriculture Volume 1. Microorganisms for Sustainability, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-16-4843-4_17

Download citation

Publish with us

Policies and ethics