Skip to main content

Diagnosis of Genetic Disorders by DNA Analysis

  • Reference work entry
  • First Online:
Handbook of DNA Profiling

Abstract

DNA diagnostic tools have revolutionized modern medicine. Rapid and cost-effective technologies have changed the way genetic diseases are being recognized and diagnosed. Doctors are adopting these tests increasingly as a genotype – first approach to comprehensively screen patients instead of multiple costly, invasive tests or tests requiring anesthesia in children such as MRI, etc. In cases without a diagnosis such as fever of unknown origin or chronic illness without a diagnosis, doctors are increasingly adopting these technologies to find answers. The challenges lay in betterment of software technologies for genotype and phenotype correlation so as to minimize the uncertainty in diagnosis and availability of functional analysis of novel variants for betterment of understanding of molecular pathophysiology of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Affymetrix (2017) website. Chromosome microarray. http://www.affymetrix.com/products/index.affx

  • Alos N, Moisan AM, Ward L, Desrochers M, Legault L, Leboeuf G, Van Vliet G, Simard J (2000) A novel A10E homozygous mutation in the HSD3B2 gene causing severe salt-wasting 3beta-hydroxysteroid dehydrogenase deficiency in 46,XX and 46,XY French-Canadians: evaluation of gonadal function after puberty. J Clin Endocrinol Metab 85(5):1968–1974

    CAS  PubMed  Google Scholar 

  • Ankala A, Tamhankar PM, Valencia CA, Rayam KK, Kumar MM, Hegde MR (2015) Clinical applications and implications of common and founder mutations in Indian subpopulations. Hum Mutat 36(1):1–10

    Article  PubMed  Google Scholar 

  • Bird TD (1993–2021) Hereditary Ataxia overview. 1998 Oct 28 [Updated 2019 Jul 25]. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews® [Internet]. University of Washington, Seattle. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1138/

  • Buyse IM, McCarthy SE, Lurix P, Pace RP, Vo D, Bartlett GA, Schmitt ES, Ward PA, Oermann C, Eng CM, Roa BB (2004) Use of MALDI-TOF mass spectrometry in a 51-mutation test for cystic fibrosis: evidence that 3199del6 is a disease-causing mutation. Genet Med 6(5):426–430

    Article  CAS  PubMed  Google Scholar 

  • Castellani C, Massie J, Sontag M, Southern KW (2016) Newborn screening for cystic fibrosis. Lancet Respir Med 4(8):653–661

    Article  PubMed  Google Scholar 

  • Chaki M, Sengupta M, Mukhopadhyay A, Subba Rao I, Majumder PP, Das M, Samanta S, Ray K (2006) OCA1 in different ethnic groups of India is primarily due to founder mutations in the tyrosinase gene. Ann Hum Genet 70(Pt 5):623–630

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Sanchis-Juan A, French CE, Connell AJ, Delon I, Kingsbury Z, Eberle MA (2020) Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genetics in Medicine 22(5):945–953

    Google Scholar 

  • Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Genetics 122(6):565–81

    Google Scholar 

  • Devyser website (2021) Principles of QF PCR. https://devyser.com/

  • Eaton WA (2020) Hemoglobin S polymerization and sickle cell disease: a retrospective on the occasion of the 70th anniversary of Pauling's science paper. Am J Hematol 95(2):205–211

    Article  PubMed  Google Scholar 

  • El-Fadaly N, Abd-Elhameed A, Abd-Elbar E, El-Shanshory M (2016) Accuracy of reverse dot-blot PCR in detection of different β-globin gene mutations. Indian J Hematol Blood Transfus 32(2):239–243

    Article  CAS  PubMed  Google Scholar 

  • Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N, Howenstine M, McColley SA, Rock M, Rosenfeld M, Sermet-Gaudelus I, Southern KW, Marshall BC, Sosnay PR (2017) Diagnosis of cystic fibrosis: consensus guidelines from the Cystic Fibrosis Foundation. J Pediatr 181S:S4–S15.e1

    Article  PubMed  Google Scholar 

  • Gold B, Radu D, Balanko A, Chiang CS (2000) Diagnosis of fragile X syndrome by Southern blot hybridization using a chemiluminescent probe: a laboratory protocol. Mol Diagn 5(3):169–178

    Article  CAS  PubMed  Google Scholar 

  • Harteveld CL, Kriek M, Bijlsma EK, Erjavec Z, Balak D, Phylipsen M, Voskamp A, di Capua E, White SJ, Giordano PC (2007) Refinement of the genetic cause of ATR-16. Hum Genet 122(3–4):283–292

    Article  CAS  PubMed  Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922):1073–80

    Google Scholar 

  • Kraemer KH, DiGiovanna JJ (1993–2021) Xeroderma Pigmentosum. 2003 Jun 20 [Updated 2016 Sep 29]. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews® [Internet]. University of Washington, Seattle. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1397/

  • Kunkel LM (2005) 2004 William Allan award address. Cloning of the DMD gene. Am J Hum Genet 76(2):205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lejeune J, Gauthier M, Turpin R (1959) Les chromosomes humains en culture de tissus [The human chromosomes in tissue culture]. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. 248:602–603

    Google Scholar 

  • Lopez-Lopez D, Loucera C, Carmona R, Aquino V, Salgado J, Pasalodos S, Miranda M, Alonso Á, Dopazo J (2020) SMN1 copy-number and sequence variant analysis from next-generation sequencing data. Hum Mutat 41(12):2073–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendonça RH, Matsui C Jr, Polido GJ, et al (2020) Intragenic variants in the SMN1 gene determine the clinical phenotype in 5q spinal muscular atrophy. Neurol Genet 6(5):e505. Published 2020 Sep 1

    Google Scholar 

  • Merke DP, Tajima T, Chhabra A, Barnes K, Mancilla E, Baron J, Cutler GB Jr (1998) Novel CYP11B1 mutations in congenital adrenal hyperplasia due to steroid 11 beta-hydroxylase deficiency. J Clin Endocrinol Metab 83(1):270–273

    CAS  PubMed  Google Scholar 

  • Mistri M, Tamhankar PM, Sheth F, Sanghavi D, Kondurkar P, Patil S, Idicula-Thomas S, Gupta S, Sheth J (2012) Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India. PLoS One 7(6):e39122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Online Mendelian (2021) Inheritance in Man. www.omim.org

  • Orkin SH, Kazazian HHJ, Antonarakis SE, Goff SC, Boehm CD, Sexton JP, Waber PG, Giardina PJV (1982) Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster. Nature 296:627–631

    Google Scholar 

  • Paperna T, Gershoni-Baruch R, Badarneh K, Kasinetz L, Hochberg Z (2005) Mutations in CYP11B1 and congenital adrenal hyperplasia in Moroccan Jews. J Clin Endocrinol Metab 90(9):5463–5465

    Article  CAS  PubMed  Google Scholar 

  • Paracchini V, Seia M, Raimondi S, Costantino L, Capasso P, Porcaro L, Colombo C, Coviello DA, Mariani T, Manzoni E, Sangiovanni M, Corbetta C (2012) Cystic fibrosis newborn screening: distribution of blood immunoreactive trypsinogen concentrations in hypertrypsinemic neonates. JIMD Rep 4:17–23

    Article  PubMed  Google Scholar 

  • Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, et al (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245(4922):1059–65.

    Google Scholar 

  • Tamhankar Parag M et al (2020) Clinical characteristics, molecular profile, and outcomes in Indian patients with glutaric aciduria type 1. J Pediatr Genet. https://doi.org/10.1055/s-0040-1715528

  • Tamhankar PM, Agarwal S, Arya V, Kumar R, Gupta UR, Agarwal SS (2009) Prevention of homozygous beta thalassemia by premarital screening and prenatal diagnosis in India. Prenat Diagn 29(1):83–88

    Google Scholar 

  • Tamhankar PM, Iyer SV, Ravindran S, Gupta N, Kabra M, Nayak C, Kura M, Sanghavi S, Joshi R, Chennuri VS, Khopkar U (2015) Clinical profile and mutation analysis of xeroderma pigmentosum in Indian patients. Indian J Dermatol Venereol Leprol 81(1):16–22

    Article  PubMed  Google Scholar 

  • Tjio JH, Levan A (1956) The chromosome number of man. Hereditas 42:1–6

    Google Scholar 

  • Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73(7):1251–1254

    Article  CAS  PubMed  Google Scholar 

  • Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15(3):228–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tamhankar, P.M., Tamhankar, V.P., Vasudevan, L. (2022). Diagnosis of Genetic Disorders by DNA Analysis. In: Dash, H.R., Shrivastava, P., Lorente, J.A. (eds) Handbook of DNA Profiling. Springer, Singapore. https://doi.org/10.1007/978-981-16-4318-7_30

Download citation

Publish with us

Policies and ethics