Skip to main content
Log in

Entwicklung der genetischen Diagnostik

  • Wissenschaft · Special: Next Generation Sequencing
  • Genetik
  • Published:
BIOspektrum Aims and scope

Abstract

DNA sequencing has had large impact on basic research and medical diagnosis. In recent years, next generation sequencing technologies have increased the sequencing speed and turnaround by magnitudes and slashed the costs. Here, we summarize different approaches and give examples for their application in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Majewski J, Schwartzentruber J, Lalonde E et al. (2011) What can exome sequencing do for you? J Med Genet 48:580–589

    Article  CAS  PubMed  Google Scholar 

  2. Veritas Genetics (2016) Veritas genetics launches $999 whole genome and sets new standard for genetic testing. Press Release, www.veritasgenetics.com/documents/VGlaunches-999-whole-genome.pdf

    Google Scholar 

  3. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  5. Koboldt DC, Steinberg KM, Larson DE et al. (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. OMIM Entry Statistics–Number of Entries in OMIM (updated 11.1.2017), https://www.omim.org/statistics/entry

  7. Meyts I, Bosch B, Bolze A et al. (2016) Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol 138:957–969

    Article  CAS  PubMed  Google Scholar 

  8. Schubert D, Bode C, Kenefeck R et al. (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20:1410–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wetterstrand KA (2016) DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute, www.genome.gov/sequencingcostsdata

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Grimbacher.

Additional information

Dietrich August Jahrgang 1990. 20092016 Medizinstudium am dem Universitäten Freiburg und Wien, Österreich. Seit 2014 Promotion am Centrum für Chronische Immundefizienz (CCI).

Bodo Grimbacher Jahrgang 1967. Humanmedizinstudium an den Universitäten Aachen, Freiburg und Hamburg. 1995 Promotion, 19972000 DFG-Forschungsaufenthalt an den National Institutes of Health, Bethesda, MA, USA. 20012006 Emmy-Nöther Fellow der DFG, 2006 Facharzt für Innere Medizin, Habilitation und Ruf an das University College London, UK. 20062011 Marie-Curie Fellow der EU. 2011 Ruf an die Universität Freiburg. Seither Wissenschaftlicher Direktor des Centrums für Chronische Immundefizienz (CCI).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

August, D., Grimbacher, B. Entwicklung der genetischen Diagnostik. Biospektrum 23, 37–40 (2017). https://doi.org/10.1007/s12268-017-0764-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-017-0764-x

Navigation