Skip to main content

Stochastic Gravitational Wave Backgrounds of Cosmological Origin

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

We discuss gravitational wave (GW) signals of cosmological origin, generated in the early universe. We argue that early universe GW backgrounds are always of stochastic nature and describe their general properties and their evolution during cosmological expansion. We present examples of relevant early universe GW generation mechanisms, as well as the properties of the GW backgrounds they produce. In particular, we discuss (1) GWs from first-order phase transitions and (2) GWs from topological defects, with a particular emphasis on cosmic strings. The phenomenology of early universe GW sources is extremely rich, possibly leading to GW backgrounds within the reach of near-future detectors. The detection of any of these stochastic signals would be a milestone in physics, providing crucial information on the high-energy physics characterizing the early universe, probing energy scales well beyond the reach of present and planned particle accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aad G et al (2012) Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716:1–29

    Article  ADS  Google Scholar 

  2. AbdusSalam SS, Chowdhury TA (2014) Scalar representations in the light of electroweak phase transition and cold dark matter phenomenology. JCAP 05:026

    Article  ADS  MathSciNet  Google Scholar 

  3. Addazi A (2017) Limiting first order phase transitions in dark Gauge sectors from gravitational waves experiments. Mod Phys Lett A 32(08):1750049

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Addazi A, Marciano A (2018) Gravitational waves from dark first order phase transitions and dark photons. Chin Phys C 42(2):023107

    Article  ADS  Google Scholar 

  5. Ade PAR et al (2014) Planck 2013 results. XXVI. Background geometry and topology of the Universe. Astron Astrophys 571:A26

    Google Scholar 

  6. Ade PAR et al (2018) BICEP2/Keck Array x: constraints on primordial gravitational waves using Planck, WMAP, and New BICEP2/Keck observations through the 2015 season. Phys Rev Lett 121:221301

    Article  ADS  Google Scholar 

  7. Akrami Y et al (2020) Planck 2018 results. X. Constraints on inflation. Astron Astrophys 641:A10

    Google Scholar 

  8. Allen B (1996) The Stochastic gravity wave background: sources and detection. In: Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation, pp 373–417

    Google Scholar 

  9. Allen B, Shellard EPS (1992) Gravitational radiation from cosmic strings. Phys Rev D 45:1898–1912

    Article  ADS  Google Scholar 

  10. Amaro-Seoane P et al (2017) Laser interferometer space antenna

    Google Scholar 

  11. Anand S, Dey UK, Mohanty S (2017) Effects of QCD equation of state on the stochastic gravitational wave background. JCAP 03:018

    Article  ADS  Google Scholar 

  12. Anber MM, Sorbo L (2012) Non-Gaussianities and chiral gravitational waves in natural steep inflation. Phys Rev D 85:123537

    Article  ADS  Google Scholar 

  13. Aoki M, Goto H, Kubo J (2017) Gravitational waves from hidden QCD phase transition. Phys Rev D 96(7):075045

    Article  ADS  MathSciNet  Google Scholar 

  14. Aoki Y, Endrodi G, Fodor Z, Katz SD, Szabo KK (2006) The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443:675–678

    Article  ADS  Google Scholar 

  15. Aoki Y (1997) Four-dimensional simulation of the hot electroweak phase transition with the SU(2) gauge Higgs model. Phys Rev D 56:3860–3865

    Article  ADS  Google Scholar 

  16. Apreda R, Maggiore M, Nicolis A, Riotto A (2002) Gravitational waves from electroweak phase transitions. Nucl Phys B 631:342–368

    Article  ADS  MATH  Google Scholar 

  17. Arzoumanian Z et al (2020) The NANOGrav 12.5-year data set: search for an isotropic stochastic gravitational-wave background

    Google Scholar 

  18. Auclair P et al (2020) Probing the gravitational wave background from cosmic strings with LISA. JCAP 04:034

    Article  ADS  Google Scholar 

  19. Baldes I (2017) Gravitational waves from the asymmetric-dark-matter generating phase transition. JCAP 05:028

    ADS  Google Scholar 

  20. Baldes I, Garcia-Cely C (2019) Strong gravitational radiation from a simple dark matter model. JHEP 05:190

    Article  ADS  MathSciNet  Google Scholar 

  21. Bardeen JM (1980) Gauge invariant cosmological perturbations. Phys Rev D 22:1882–1905

    Article  ADS  MathSciNet  Google Scholar 

  22. Bartolo N, Bertacca D, Matarrese S, Peloso M, Ricciardone A, Riotto A, Tasinato G (2019) Anisotropies and non-Gaussianity of the cosmological gravitational wave background. Phys Rev D 100(12):121501

    Article  ADS  MATH  Google Scholar 

  23. Bartolo N, Bertacca D, Matarrese S, Peloso M, Ricciardone A, Riotto A, Tasinato G (2020) Characterizing the cosmological gravitational wave background: anisotropies and non-Gaussianity. Phys Rev D 102(2):023527

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Bartolo N, Matarrese S, Peloso M, Ricciardone A (2013) Anisotropic power spectrum and bispectrum in the f(ϕ)F2 mechanism. Phys Rev D 87(2):023504

    Article  ADS  Google Scholar 

  25. Bartolo N, Matarrese S, Peloso M, Shiraishi M (2015) Parity-violating and anisotropic correlations in pseudoscalar inflation. JCAP 01:027

    Article  ADS  MathSciNet  Google Scholar 

  26. Bethke L, Figueroa DG, Rajantie A (2013) Anisotropies in the gravitational wave background from preheating. Phys Rev Lett 111(1):011301

    Article  ADS  Google Scholar 

  27. Bethke L, Figueroa DG, Rajantie A (2014) On the anisotropy of the gravitational wave background from massless preheating. JCAP 06:047

    Article  ADS  MathSciNet  Google Scholar 

  28. Bevis N, Hindmarsh M, Kunz M, Urrestilla J (2007) CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model. Phys Rev D 75:065015

    Article  ADS  Google Scholar 

  29. Bevis N, Hindmarsh M, Kunz M, Urrestilla J (2010) CMB power spectra from cosmic strings: predictions for the Planck satellite and beyond. Phys Rev D 82:065004

    Article  ADS  Google Scholar 

  30. Binetruy P, Bohe A, Hertog T, Steer DA (2009) Gravitational wave bursts from cosmic superstrings with Y-junctions. Phys Rev D 80:123510

    Article  ADS  Google Scholar 

  31. Binetruy P, Bohe A, Caprini C, Dufaux J-F (2012) Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources. JCAP 06:027

    Article  ADS  Google Scholar 

  32. Blanco-Pillado JJ, Olum KD (2017) Stochastic gravitational wave background from smoothed cosmic string loops. Phys Rev D 96(10):104046

    Article  ADS  MathSciNet  Google Scholar 

  33. Blanco-Pillado JJ, Olum KD, Shlaer B (2011) Large parallel cosmic string simulations: new results on loop production. Phys Rev D 83:083514

    Article  ADS  Google Scholar 

  34. Blanco-Pillado JJ, Olum KD, Shlaer B (2014) The number of cosmic string loops. Phys Rev D 89(2):023512

    Article  ADS  Google Scholar 

  35. Blanco-Pillado JJ, Olum KD, Siemens X (2018) New limits on cosmic strings from gravitational wave observation. Phys Lett B 778:392–396

    Article  ADS  Google Scholar 

  36. Blasi S, Brdar V, Schmitz K (2020) Has NANOGrav found first evidence for cosmic strings?

    Google Scholar 

  37. Bodeker D, Moore GD (2017) Electroweak bubble wall speed limit. JCAP 05:025

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Brandenburg A, Kahniashvili T, Mandal S, Roper Pol A, Tevzadze AG, Vachaspati T (2017) Evolution of hydromagnetic turbulence from the electroweak phase transition. Phys Rev D 96(12):123528

    Article  ADS  MathSciNet  Google Scholar 

  39. Breitbach M, Kopp J, Madge E, Opferkuch T, Schwaller P (2019) Dark, cold, and noisy: constraining secluded hidden sectors with gravitational waves. JCAP 07:007

    Article  ADS  MathSciNet  Google Scholar 

  40. Brill DR, Hartle JB (1964) Method of the self-consistent field in general relativity and its application to the gravitational geon. Phys Rev 135:B271–B278

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Bruggisser S, Von Harling B, Matsedonskyi O, Servant G (2018) Electroweak phase transition and baryogenesis in composite Higgs models. JHEP 12:099

    Article  ADS  Google Scholar 

  42. Buchmuller W, Domcke V, Schmitz K (2020) From NANOGrav to LIGO with metastable cosmic strings

    Google Scholar 

  43. Bunk D, Hubisz J, Jain B (2018) A perturbative RS I cosmological phase transition. Eur Phys J C 78(1):78

    Article  ADS  Google Scholar 

  44. Caldwell RR, Allen B (1992) Cosmological constraints on cosmic string gravitational radiation. Phys Rev D 45:3447–3468

    Article  ADS  Google Scholar 

  45. Caldwell RR, Battye RA, Shellard EPS (1996) Relic gravitational waves from cosmic strings: updated constraints and opportunities for detection. Phys Rev D 54:7146–7152

    Article  ADS  Google Scholar 

  46. Caprini C, Durrer R, Konstandin T, Servant G (2009) General properties of the gravitational wave spectrum from phase transitions. Phys Rev D 79:083519

    Article  ADS  Google Scholar 

  47. Caprini C, Durrer R, Servant G (2009) The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition. JCAP 12:024

    Article  ADS  Google Scholar 

  48. Caprini C, Durrer R, Siemens X (2010) Detection of gravitational waves from the QCD phase transition with pulsar timing arrays. Phys Rev D 82:063511

    Article  ADS  Google Scholar 

  49. Caprini C et al (2016) Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. JCAP 04:001

    Google Scholar 

  50. Caprini C et al (2020) Detecting gravitational waves from cosmological phase transitions with LISA: an update. JCAP 03:024

    Article  ADS  Google Scholar 

  51. Caprini C, Figueroa DG (2018) Cosmological backgrounds of gravitational waves. Class Quantum Gravity 35(16):163001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Caprini C, Figueroa DG, Flauger R, Nardini G, Peloso M, Pieroni M, Ricciardone A, Tasinato G (2019) Reconstructing the spectral shape of a stochastic gravitational wave background with LISA. JCAP 11:017

    Article  ADS  MathSciNet  Google Scholar 

  53. Carroll SM (2019) Spacetime and geometry. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  54. Chala M, Krause C, Nardini G (2018) Signals of the electroweak phase transition at colliders and gravitational wave observatories. JHEP 07:062

    Article  ADS  Google Scholar 

  55. Chala M, Nardini G, andSobolev I (2016) Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures. Phys Rev D 94(5):055006

    Google Scholar 

  56. Chala M, Ramos M, Spannowsky M (2019) Gravitational wave and collider probes of a triplet Higgs sector with a low cutoff. Eur Phys J C 79(2):156

    Article  ADS  Google Scholar 

  57. Chen C-Y, Kozaczuk J, Lewis IM (2017) Non-resonant collider signatures of a singlet-driven electroweak phase transition. JHEP 08:096

    ADS  Google Scholar 

  58. Cook JL, Sorbo L (2013) An inflationary model with small scalar and large tensor nongaussianities. JCAP 11:047

    Article  ADS  MathSciNet  Google Scholar 

  59. Corbin V, Cornish NJ (2006) Detecting the cosmic gravitational wave background with the big bang observer. Class Quantum Gravity 23:2435–2446

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Craig N, Lou HK, McCullough M, Thalapillil A (2016) The Higgs portal above threshold. JHEP 02:127

    Article  ADS  Google Scholar 

  61. Croon D, Gould O, Schicho P, Tenkanen TVI, White G (2020) Theoretical uncertainties for cosmological first-order phase transitions

    Google Scholar 

  62. Croon D, Sanz V, White G (2018) Model discrimination in gravitational wave spectra from dark phase transitions. JHEP 08:203

    Article  ADS  Google Scholar 

  63. Croon D, White G (2018) Exotic gravitational wave signatures from simultaneous phase transitions. JHEP 05:210

    Article  ADS  Google Scholar 

  64. Curtin D, Meade P, Yu C-T (2014) Testing electroweak baryogenesis with future colliders. JHEP 11:127

    Article  ADS  Google Scholar 

  65. Cutting D, Escartin EG, Hindmarsh M, Weir DJ (2020) Gravitational waves from vacuum first order phase transitions II: from thin to thick walls

    Google Scholar 

  66. Cutting D, Hindmarsh M, Weir DJ (2018) Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice. Phys Rev D 97(12):123513

    Article  ADS  Google Scholar 

  67. Cutting D, Hindmarsh M, Weir DJ (2020) Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions. Phys Rev Lett 125(2):021302

    Article  ADS  MathSciNet  Google Scholar 

  68. Damour T, Vilenkin A (2000) Gravitational wave bursts from cosmic strings. Phys Rev Lett 85:3761–3764

    Article  ADS  Google Scholar 

  69. Damour T, Vilenkin A (2001) Gravitational wave bursts from cusps and kinks on cosmic strings. Phys Rev D 64:064008

    Article  ADS  MathSciNet  Google Scholar 

  70. Damour T, Vilenkin A (2005) Gravitational radiation from cosmic (super)strings: bursts, stochastic background, and observational windows. Phys Rev D 71:063510

    Article  ADS  Google Scholar 

  71. Daverio D, Hindmarsh M, Kunz M, Lizarraga J, Urrestilla J (2016) Energy-momentum correlations for Abelian Higgs cosmic strings. Phys Rev D 93(8):085014 [Erratum: (2017) Phys Rev D 95:049903]

    Google Scholar 

  72. Davidson PA (2004) Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford

    MATH  Google Scholar 

  73. Davies AT, Froggatt CD, Moorhouse RG (1996) Electroweak baryogenesis in the next-to-minimal supersymmetric model. Phys Lett B 372:88–94

    Article  ADS  Google Scholar 

  74. Davoudiasl H, Lewis I, Ponton E (2013) Electroweak phase transition, Higgs diphoton rate, and new heavy fermions. Phys Rev D 87(9):093001

    Article  ADS  Google Scholar 

  75. Delaunay C, Grojean C, Wells JD (2008) Dynamics of non-renormalizable electroweak symmetry breaking. JHEP 04:029

    Article  ADS  Google Scholar 

  76. DePies MR, Hogan CJ (2007) Stochastic gravitational wave background from light cosmic strings. Phys Rev D 75:125006

    Article  ADS  Google Scholar 

  77. Dillon BM, El-Menoufi BK, Huber SJ, Manuel JP (2018) Rapid holographic phase transition with brane-localized curvature. Phys Rev D 98(8):086005

    Article  ADS  MathSciNet  Google Scholar 

  78. Dolgov AD, Grasso D, Nicolis A (2002) Relic backgrounds of gravitational waves from cosmic turbulence. Phys Rev D 66:103505

    Article  ADS  Google Scholar 

  79. Dorsch GC, Huber SJ, No JM (2013) A strong electroweak phase transition in the 2HDM after LHC8. JHEP 10:029

    Article  ADS  Google Scholar 

  80. Dorsch GC, Huber SJ, Konstandin T (2018) Bubble wall velocities in the Standard Model and beyond. JCAP 12:034

    Article  ADS  Google Scholar 

  81. Durrer R, Kunz M, Melchiorri A (2002) Cosmic structure formation with topological defects. Phys Rep 364:1–81

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Durrer R (2008) The cosmic microwave background. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  83. Ellis J, Lewicki M (2020) Cosmic string interpretation of NANOGrav pulsar timing data

    Google Scholar 

  84. Ellis J, Lewicki M, No JM (2019) On the maximal strength of a first-order electroweak phase transition and its gravitational wave signal. JCAP 04:003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Enqvist K, Ignatius J, Kajantie K, Rummukainen K (1992) Nucleation and bubble growth in a first order cosmological electroweak phase transition. Phys Rev D 45:3415–3428

    Article  ADS  Google Scholar 

  86. Espinosa JR, Konstandin T, No JM, Servant G (2010) Energy budget of cosmological first-order phase transitions. JCAP 06:028

    Article  ADS  Google Scholar 

  87. Espinosa JR, Konstandin T, Riva F (2012) Strong electroweak phase transitions in the standard model with a singlet. Nucl Phys B 854:592–630

    Article  ADS  MATH  Google Scholar 

  88. Espinosa JR, Konstandin T, No JM, Quiros M (2008) Some cosmological implications of hidden sectors. Phys Rev D 78:123528

    Article  ADS  Google Scholar 

  89. Fairbairn M, Hardy E, Wickens A (2019) Hearing without seeing: gravitational waves from hot and cold hidden sectors. JHEP 07:044

    Article  ADS  MATH  Google Scholar 

  90. Fairbairn M, Hogan R (2013) Singlet fermionic dark matter and the electroweak phase transition. JHEP 09:022

    Article  ADS  Google Scholar 

  91. Fenu E, Figueroa DG, Durrer R, Garcia-Bellido J (2009) Gravitational waves from self-ordering scalar fields. JCAP 10:005

    Article  ADS  Google Scholar 

  92. Figueroa DG (2010) Aspects of reheating. PhD thesis

    Google Scholar 

  93. Figueroa DG, Hindmarsh M, Lizarraga J, Urrestilla J (2020) Irreducible background of gravitational waves from a cosmic defect network: update and comparison of numerical techniques

    Google Scholar 

  94. Figueroa DG, Hindmarsh M, Urrestilla J (2013) Exact scale-invariant background of gravitational waves from cosmic defects. Phys Rev Lett 110(10):101302

    Article  ADS  Google Scholar 

  95. Flanagan EE, Hughes SA (2005) The Basics of gravitational wave theory. New J Phys 7:204

    Article  MathSciNet  Google Scholar 

  96. Fromme L, Huber SJ, Seniuch M (2006) Baryogenesis in the two-Higgs doublet model. JHEP 11:038

    Article  ADS  Google Scholar 

  97. Ghiglieri J, Jackson G, Laine M, Zhu Y (2020) Gravitational wave background from Standard Model physics: complete leading order. JHEP 07:092

    Article  ADS  MathSciNet  Google Scholar 

  98. Giblin JT, Mertens JB (2014) Gravitional radiation from first-order phase transitions in the presence of a fluid. Phys Rev D 90(2):023532

    Article  ADS  Google Scholar 

  99. Giblin JT, Price LR, Siemens X, Vlcek B (2012) Gravitational waves from global second order phase transitions. JCAP 11:006

    Article  ADS  Google Scholar 

  100. Giese F, Konstandin T, van de Vis J (2020) Model-independent energy budget of cosmological first-order phase transitions—a sound argument to go beyond the bag model. JCAP 07(07):057

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Gogoberidze G, Kahniashvili T, Kosowsky A (2007) The spectrum of gravitational radiation from primordial turbulence. Phys Rev D 76:083002

    Article  ADS  Google Scholar 

  102. Gould O, Kozaczuk J, Niemi L, Ramsey-Musolf MJ, Tenkanen TVI, Weir DJ (2019) Nonperturbative analysis of the gravitational waves from a first-order electroweak phase transition. Phys Rev D 100(11):115024

    Article  ADS  MathSciNet  Google Scholar 

  103. Grojean C, Servant G, Wells JD (2005) First-order electroweak phase transition in the standard model with a low cutoff. Phys Rev D 71:036001

    Article  ADS  Google Scholar 

  104. Gurtler M, Ilgenfritz E-M, Schiller A (1997) Where the electroweak phase transition ends. Phys Rev D 56:3888–3895

    Article  ADS  Google Scholar 

  105. Hindmarsh M (2018) Sound shell model for acoustic gravitational wave production at a first-order phase transition in the early Universe. Phys Rev Lett 120(7):071301

    Article  ADS  Google Scholar 

  106. Hindmarsh M, Hijazi M (2019) Gravitational waves from first order cosmological phase transitions in the Sound Shell Model. JCAP 12:062

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. Hindmarsh M, Huber SJ, Rummukainen K, Weir DJ (2014) Gravitational waves from the sound of a first order phase transition. Phys Rev Lett 112:041301

    Article  ADS  Google Scholar 

  108. Hindmarsh M, Huber SJ, Rummukainen K, Weir DJ (2015) Numerical simulations of acoustically generated gravitational waves at a first order phase transition. Phys Rev D 92(12):123009

    Article  ADS  Google Scholar 

  109. Hindmarsh M, Huber SJ, Rummukainen K, Weir DJ (2017) Shape of the acoustic gravitational wave power spectrum from a first order phase transition. Phys Rev D 96(10):103520 [Erratum: (2020) Phys Rev D 101:089902]

    Google Scholar 

  110. Hindmarsh M, Lizarraga J, Urrestilla J, Daverio D, Kunz M (2017) Scaling from gauge and scalar radiation in Abelian Higgs string networks. Phys Rev D 96(2):023525

    Article  ADS  MathSciNet  Google Scholar 

  111. Hindmarsh MB, Lüben M, Lumma J, Pauly M (2020) Phase transitions in the early universe

    Google Scholar 

  112. Hindmarsh MB, Kibble TWB (1995) Cosmic strings. Rep Prog Phys 58:477–562

    Article  ADS  MathSciNet  Google Scholar 

  113. Höche S, Kozaczuk J, Long AJ, Turner J, Wang Y (2020) Towards an all-orders calculation of the electroweak bubble wall velocity

    Google Scholar 

  114. Hogan CJ (1983) Nucleation of cosmological phase transitions. Phys Lett B 133:172–176

    Article  ADS  Google Scholar 

  115. Hogan CJ (1986) Gravitational radiation from cosmological phase transitions. Mon Not R Astron Soc 218:629–636

    Article  ADS  Google Scholar 

  116. Huang W, Kang Z, Shu J, Wu P, Yang JM (2015) New insights in the electroweak phase transition in the NMSSM. Phys Rev D 91(2):025006

    Article  ADS  Google Scholar 

  117. Huang W, Shu J, Zhang Y On the Higgs fit and electroweak phase transition. JHEP 03:164 (2013)

    Article  ADS  Google Scholar 

  118. Huber SJ, Konstandin T (2008) Gravitational wave production by collisions: more bubbles. JCAP 09:022

    Article  ADS  Google Scholar 

  119. Huber SJ, Konstandin T (2008) Production of gravitational waves in the nMSSM. JCAP 05:017

    Article  ADS  Google Scholar 

  120. Husdal L (2016) On effective degrees of freedom in the early universe. Galaxies 4(4):78

    Article  ADS  Google Scholar 

  121. Ignatius J, Kajantie K, Kurki-Suonio H, Laine M (1994) The growth of bubbles in cosmological phase transitions. Phys Rev D 49:3854–3868

    Article  ADS  Google Scholar 

  122. Jaeckel J, Khoze VV, Spannowsky M (2016) Hearing the signal of dark sectors with gravitational wave detectors. Phys Rev D 94(10):103519

    Article  ADS  Google Scholar 

  123. Jeannerot R, Rocher J, Sakellariadou M (2003) How generic is cosmic string formation in SUSY GUTs. Phys Rev D 68:103514

    Article  ADS  Google Scholar 

  124. Jones-Smith K, Krauss LM, Mathur H (2008) A nearly scale invariant spectrum of gravitational radiation from global phase transitions. Phys Rev Lett 100:131302

    Article  ADS  Google Scholar 

  125. Kahniashvili T, Campanelli L, Gogoberidze G, Maravin Y, Ratra B (2008) Gravitational radiation from primordial helical inverse cascade MHD turbulence. Phys Rev D 78:123006 [Erratum: (2009) Phys Rev D 79:109901]

    Google Scholar 

  126. Kainulainen K, Keus V, Niemi L, Rummukainen K, Tenkanen TVI, Vaskonen V (2019) On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model. JHEP 06:075

    Article  ADS  Google Scholar 

  127. Kajantie K, Laine M, Rummukainen K, Shaposhnikov ME (1996) Is there a hot electroweak phase transition at m(H) larger or equal to m(W)? Phys Rev Lett 77:2887–2890

    Article  ADS  Google Scholar 

  128. Kajantie K, Laine M, Rummukainen K, Shaposhnikov ME (1996) The electroweak phase transition: a nonperturbative analysis. Nucl Phys B 466:189–258

    Article  ADS  Google Scholar 

  129. Kakizaki M, Kanemura S, Matsui T (2015) Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition. Phys Rev D 92(11):115007

    Article  ADS  Google Scholar 

  130. Kalaydzhyan T, Shuryak E (2015) Gravity waves generated by sounds from big bang phase transitions. Phys Rev D 91(8):083502

    Article  ADS  Google Scholar 

  131. Kamionkowski M, Kosowsky A, Turner MS (1994) Gravitational radiation from first order phase transitions. Phys Rev D 49:2837–2851

    Article  ADS  Google Scholar 

  132. Kawamura S et al (2006) The Japanese space gravitational wave antenna DECIGO. Class Quantum Gravity 23:S125–S132

    Article  Google Scholar 

  133. Kawamura S et al (2011) The Japanese space gravitational wave antenna: DECIGO. Class Quantum Gravity 28:094011

    Article  ADS  Google Scholar 

  134. Kibble TWB (1976) Topology of cosmic domains and strings. J Phys A 9:1387–1398

    Article  ADS  MATH  Google Scholar 

  135. Kodama H, Sasaki M (1984) Cosmological perturbation theory. Prog Theor Phys Suppl 78:1–166

    Article  ADS  Google Scholar 

  136. Kolb EW, Turner MS (1990) The early universe, vol 69. Addison-Wesley, Redwood City

    MATH  Google Scholar 

  137. Konstandin T, Nardini G, Quiros M (2010) Gravitational backreaction effects on the holographic phase transition. Phys Rev D 82:083513

    Article  ADS  Google Scholar 

  138. Konstandin T, Nardini G, Rues I (2014) From Boltzmann equations to steady wall velocities. JCAP 09:028

    Article  ADS  Google Scholar 

  139. Konstandin T, Servant G (2011) Cosmological consequences of nearly conformal dynamics at the TeV scale. JCAP 12:009

    Article  ADS  Google Scholar 

  140. Kosowsky A, Mack A, Kahniashvili T (2002) Gravitational radiation from cosmological turbulence. Phys Rev D 66:024030

    Article  ADS  MathSciNet  Google Scholar 

  141. Kosowsky A, Turner MS (1993) Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions. Phys Rev D 47:4372–4391

    Article  ADS  Google Scholar 

  142. Kosowsky A, Turner MS, Watkins R (1992) Gravitational radiation from colliding vacuum bubbles. Phys Rev D 45:4514–4535

    Article  ADS  Google Scholar 

  143. Kozaczuk J (2015) Bubble expansion and the viability of singlet-driven electroweak baryogenesis. JHEP 10:135

    Article  ADS  Google Scholar 

  144. Kozaczuk J, Profumo S, Haskins LS, Wainwright CL (2015) Cosmological phase transitions and their properties in the NMSSM. JHEP 01:144

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. Kozaczuk J, Profumo S, Wainwright CL (2013) Electroweak baryogenesis and the fermi gamma-ray line. Phys Rev D 87(7):075011

    Article  ADS  Google Scholar 

  146. Krauss LM (1992) Gravitational waves from global phase transitions. Phys Lett B 284:229–233

    Article  ADS  Google Scholar 

  147. Kurki-Suonio H, Laine M (1995) Supersonic deflagrations in cosmological phase transitions. Phys Rev D 51:5431–5437

    Article  ADS  Google Scholar 

  148. Kurki-Suonio H, Laine M (1996) On bubble growth and droplet decay in cosmological phase transitions. Phys Rev D 54:7163–7171

    Article  ADS  Google Scholar 

  149. Kurki-Suonio H, Laine M (1996) Real time history of the cosmological electroweak phase transition. Phys Rev Lett 77:3951–3954

    Article  ADS  Google Scholar 

  150. Laine M, Nardini G, Rummukainen K (2013) Lattice study of an electroweak phase transition at m_h ˜ 126 GeV. JCAP 01:011

    Article  ADS  Google Scholar 

  151. Laine M, Rummukainen K (1999) What’s new with the electroweak phase transition? Nucl Phys B Proc Suppl 73:180–185

    Article  ADS  Google Scholar 

  152. Laine M, Vuorinen A (2016) Basics of thermal field theory, vol 925. Springer, Cham

    MATH  Google Scholar 

  153. Landau LD, Lifshitz EM (1987) Fluid mechanics. physics). In: Landau LD, Lifshitz EM (eds) Course of theoretical physics, vol 6, 2nd edn. Butterworth-Heinemann

    Google Scholar 

  154. Linde AD (1983) Decay of the false vacuum at finite temperature. Nucl Phys B 216:421 [Erratum: (1983) Nucl Phys B 223:544]

    Google Scholar 

  155. Lizarraga J, Urrestilla J, Daverio D, Hindmarsh M, Kunz M (2016) New CMB constraints for Abelian Higgs cosmic strings. JCAP 10:042

    Article  ADS  Google Scholar 

  156. Lopez-Eiguren A, Lizarraga J, Hindmarsh M, Urrestilla J (2017) Cosmic microwave background constraints for global strings and global monopoles. JCAP 07:026

    Article  ADS  Google Scholar 

  157. Madge E, Schwaller P (2019) Leptophilic dark matter from gauged lepton number: phenomenology and gravitational wave signatures. JHEP 02:048

    Article  ADS  Google Scholar 

  158. Maggiore M (2007) Gravitational waves. Vol. 1: theory and experiments. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  159. Maggiore M (2000) Gravitational wave experiments and early universe cosmology. Phys Rep 331:283–367

    Article  ADS  Google Scholar 

  160. Megevand A, Sanchez AD (2009) Detonations and deflagrations in cosmological phase transitions. Nucl Phys B 820:47–74

    Article  ADS  MATH  Google Scholar 

  161. Megías E, Nardini G, Quirós M (2018) Cosmological phase transitions in warped space: gravitational waves and collider signatures. JHEP 09:095

    Article  ADS  MATH  Google Scholar 

  162. Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. W. H. Freeman, San Francisco

    Google Scholar 

  163. Moore GD, Prokopec T (1995) Bubble wall velocity in a first order electroweak phase transition. Phys Rev Lett 75:777–780

    Article  ADS  Google Scholar 

  164. Moore GD, Prokopec T (1995) How fast can the wall move? A Study of the electroweak phase transition dynamics. Phys Rev D 52:7182–7204

    Article  ADS  Google Scholar 

  165. Morrissey DE, Ramsey-Musolf MJ (2012) Electroweak baryogenesis. New J Phys 14:125003

    Article  Google Scholar 

  166. Nardini G, Quiros M, Wulzer A (2007) A confining strong first-order electroweak phase transition. JHEP 09:077

    Article  ADS  Google Scholar 

  167. Naruko A, Komatsu E, Yamaguchi M (2015) Anisotropic inflation reexamined: upper bound on broken rotational invariance during inflation. JCAP 04:045

    Article  ADS  MathSciNet  Google Scholar 

  168. Neronov A, Roper Pol A, Caprini C, Semikoz D (2021) NANOGrav signal from magnetohydrodynamic turbulence at the QCD phase transition in the early Universe. Phys Rev D 103(4):041302. https://doi.org/10.1103/PhysRevD.103.L041302

    Article  ADS  Google Scholar 

  169. Niemi L, Patel HH, Ramsey-Musolf MJ, Tenkanen TVI, Weir DJ (2019) Electroweak phase transition in the real triplet extension of the SM: dimensional reduction. Phys Rev D 100(3):035002

    Article  ADS  MathSciNet  Google Scholar 

  170. Niksa P, Schlederer M, Sigl G (2018) Gravitational waves produced by compressible MHD turbulence from cosmological phase transitions. Class Quantum Gravity 35(14):144001

    Article  MathSciNet  Google Scholar 

  171. Olmez S, Mandic V, Siemens X (2010) Gravitational-wave stochastic background from Kinks and Cusps on cosmic strings. Phys Rev D 81:104028

    Article  ADS  Google Scholar 

  172. Panico G, Wulzer A (2016) The composite Nambu-Goldstone Higgs, vol 913. Springer, Cham

    MATH  Google Scholar 

  173. Patel HH, Ramsey-Musolf MJ (2013) Stepping into electroweak symmetry breaking: phase transitions and Higgs phenomenology. Phys Rev D 88:035013

    Article  ADS  Google Scholar 

  174. Pen U-L, Turok N (2016) Shocks in the early universe. Phys Rev Lett 117(13):131301

    Article  ADS  Google Scholar 

  175. Pietroni M (1993) The electroweak phase transition in a nonminimal supersymmetric model. Nucl Phys B 402:27–45

    Article  ADS  Google Scholar 

  176. Profumo S, Ramsey-Musolf MJ, Shaughnessy G (2007) Singlet Higgs phenomenology and the electroweak phase transition. JHEP 08:010

    Article  ADS  Google Scholar 

  177. Profumo S, Ramsey-Musolf MJ, Wainwright CL, Winslow P (2015) Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies. Phys Rev D 91(3): 035018

    Article  ADS  Google Scholar 

  178. Quiros M (1999) Finite temperature field theory and phase transitions. In: ICTP summer school in high-energy physics and cosmology, pp 187–259

    Google Scholar 

  179. Randall L, Servant G (2007) Gravitational waves from warped spacetime. JHEP 05:054

    Article  ADS  MathSciNet  Google Scholar 

  180. Regimbau T, Giampanis S, Siemens X, Mandic V (2012) The stochastic background from cosmic (super)strings: popcorn and (Gaussian) continuous regimes. Phys Rev D 85:066001

    Article  ADS  Google Scholar 

  181. Ringeval C, Sakellariadou M, Bouchet F (2007) Cosmological evolution of cosmic string loops. JCAP 02:023

    Article  ADS  Google Scholar 

  182. Ringeval C, Suyama T (2017) Stochastic gravitational waves from cosmic string loops in scaling. JCAP 12:027

    Article  ADS  MathSciNet  MATH  Google Scholar 

  183. Romano JD, Cornish NJ (2017) Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Rev Rel 20(1):2

    Article  Google Scholar 

  184. Roper Pol A, Mandal S, Brandenburg A, Kahniashvili T, Kosowsky A (2019) Numerical simulations of gravitational waves from early-universe turbulence

    Google Scholar 

  185. Sanidas SA, Battye RA, Stappers BW (2012) Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array. Phys Rev D 85:122003

    Article  ADS  Google Scholar 

  186. Sarangi S, Henry Tye SH (2002) Cosmic string production towards the end of brane inflation. Phys Lett B 536:185–192

    Article  ADS  MATH  Google Scholar 

  187. Sato S et al (2017) The status of DECIGO. J Phys Conf Ser 840(1):012010

    Article  Google Scholar 

  188. Schwaller P (2015) Gravitational waves from a dark phase transition. Phys Rev Lett 115(18):181101

    Article  ADS  Google Scholar 

  189. Schwarz DJ, Stuke M (2009) Lepton asymmetry and the cosmic QCD transition. JCAP 11:025 [Erratum: (2010) JCAP 10:E01]

    Google Scholar 

  190. Seto N, Kawamura S, Nakamura T (2001) Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space. Phys Rev Lett 87:221103

    Google Scholar 

  191. Siemens X, Mandic V, Creighton J Gravitational wave stochastic background from cosmic (super)strings. Phys Rev Lett 98:111101 (2007)

    Article  ADS  Google Scholar 

  192. Sorbo L (2011) Parity violation in the cosmic microwave background from a pseudoscalar inflaton. JCAP 06:003

    Article  ADS  Google Scholar 

  193. Stephanov MA (2006) QCD phase diagram: an overview. PoS LAT2006:024

    Google Scholar 

  194. Stewart J (1993) Advanced general relativity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  195. Tsumura K, Yamada M, Yamaguchi Y (2017) Gravitational wave from dark sector with dark pion. JCAP 07:044

    Article  ADS  Google Scholar 

  196. Turner MS, Weinberg EJ, Widrow LM (1992) Bubble nucleation in first order inflation and other cosmological phase transitions. Phys Rev D 46:2384–2403

    Article  ADS  Google Scholar 

  197. Turok N, Spergel DN (1991) Scaling solution for cosmological sigma models at large N. Phys Rev Lett 66:3093–3096

    Article  ADS  Google Scholar 

  198. Vachaspati T, Vilenkin A (1985) Gravitational radiation from cosmic strings. Phys Rev D 31:3052

    Article  ADS  Google Scholar 

  199. Vilenkin A (1981) Gravitational radiation from cosmic strings. Phys Lett B 107:47–50

    Article  ADS  Google Scholar 

  200. Vilenkin A, Shellard EPS (2000) Cosmic strings and other topological defects. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  201. Weinberg S (2008) Cosmology. Oxford University Press, Oxford

    MATH  Google Scholar 

  202. Witten E (1984) Cosmic separation of phases. Phys Rev D 30:272–285

    Article  ADS  Google Scholar 

  203. Wygas MM, Oldengott IM, Bödeker D, Schwarz DJ (2018) Cosmic QCD epoch at nonvanishing Lepton asymmetry. Phys Rev Lett 121(20):201302

    Article  ADS  Google Scholar 

  204. Yagi K, Seto N (2011) Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries. Phys Rev D 83:044011 [Erratum: (2017) Phys Rev D 95:109901]

    Google Scholar 

Download references

Acknowledgements

We are very grateful to our collaborators from the LISA Cosmology Working Group for the work developed within the group, some of which we review in this chapter. DGF (ORCID 0000-0002-4005-8915) is supported by a Ramón y Cajal contract by Spanish Ministry MINECO, with Ref. RYC-2017-23493, and by the “SOM: Sabor y Origen de la Materia” grant from the Spanish Ministry of Science and Innovation, under no. FPA2017-85985-P. This work was supported by CNES, in the framework of the LISA mission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Caprini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Caprini, C., Figueroa, D.G. (2022). Stochastic Gravitational Wave Backgrounds of Cosmological Origin. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_25

Download citation

Publish with us

Policies and ethics