Skip to main content

Recycling of Rechargeable Batteries: A Sustainable Tool for Urban Mining

  • Reference work entry
  • First Online:
Handbook of Solid Waste Management

Abstract

Renewable energy, by means of energy capture, storage, and transmission, is able to fulfil the catastrophic energy demand worldwide but requires suitable storage devises. Rechargeable batteries are prominent to do so. However, based on the capability of energy storage, Ni-Cd, Pb-acid, and Li-ion batteries are the most important and remained in wider use among others. Therefore, a large number of batteries is being spent after completion of their life span, and this needed to be handled in proper manner. The landfill disposal may cause severe environmental problems like soil, ground, and water pollution with the hazardous and toxic contents therein (like Cd, Ni, Co, KCl). Additionally, such kind of disposal is a huge loss of resources as to the criticality and strategic importance of these metals due to their crustal abundance and geopolitical scenario. Efficient recycling of spent batteries can lead toward the sustainable solution of this problem via conservation of primary ores by recovery of metals, waste minimization, and recycling. Recycling of spent battery is in trend and has been a global topic for environmentalists and metallurgists. Several research works have been done that clearly indicate the economic and environmental interests in this area. Therefore, we attempt, in this chapter, to investigate and discuss the recycling processes for the extraction, separation, and recovery of metals from not only a technological perspective but also the related environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A. Agrawal, P. Pathak, D. Mishra, K.K. Sahu, Solvent mediated interaction for the selective recovery of Cadmium from Ni-Cd Spent battery. J. Mol. Liq. 173, 77–84 (2012)

    Article  CAS  Google Scholar 

  • Allied Market Research, Lithium-ion Battery Market Outlet 2027 (2019), https://www.alliedmarketresearch.com/lithium-ion-battery-market. Accessed 05 May 2020

  • H. Aral, A. Vecchio-sadus, Toxicity of lithium to humans and the environment – A literature review. Ecotoxicol. Environ. Saf. 70(3), 349–356 (2008)

    Article  CAS  Google Scholar 

  • M. Assefi, S. Maroufi, Y. Yamauchi, V. Sahajwalla, Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview. Curr. Opin. Green Sustain. Chem. 24, 26–31 (2020)

    Article  Google Scholar 

  • S. Bindschedler, T.Q.T.V. Bouquet, D. Job, E. Joseph, P. Junier, Fungal biorecovery of gold from e-waste. Adv. Appl. Microbiol. 99, 53–81 (2017)

    Article  CAS  Google Scholar 

  • N.J. Boxall, K.Y. Cheng, W. Bruckard, A.H. Kaksonen, Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. J. of Hazardous Materials, 360, 504–511 (2018)

    Google Scholar 

  • K. Chabhadiya, H.T. Patel, R. Niranjani, P. Pathak, Recovery of Precious Metal from Lithium ion Battery: A Secondary Urban Resource (National Environmental Conference (NEC-2019), IIT Bombay, 2019)

    Google Scholar 

  • K. Chabhadiya, R.R. Srivastava, P. Pathak, Two-step leaching process and kinetics for an eco-friendly recycling of critical metals from spent Li-ion batteries. J. Environmental Chemical Engineering, 9(3), 105232 (2021)

    Google Scholar 

  • H. Dang, B. Wang, Z. Chang, X. Wu, J. Feng, H. Zhou, W. Li, C. Sun, Recycle lithium from simulated pyro-metallurgical slag by chlorination roasting. ACS Sustain. Chem. Eng. 6(10), 13160–13167 (2018)

    Article  CAS  Google Scholar 

  • M. Desmarais, F. Pirade, J. Zhang, E.R. Rene, Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives. Bioresour. Technol. Rep. 11, 100526 (2020)

    Article  Google Scholar 

  • J. Dewulf, G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, K. Vandeputte, Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resour. Conserv. Recycl. 54(4), 229–234 (2010)

    Article  Google Scholar 

  • Encyclopedia Britannica. Alessandro Volta. https://www.britannica.com/biography/Alessandro-Volta. Accessesd 11 May 2020

  • D.C.R. Espinosa, M.B. Mansur, Waste Electrical and Electronic Equipment (WEEE) Handbook (2012)

    Google Scholar 

  • D.C.R. Espinosa, J.A.S. Tenório, Recycling of nickel–cadmium batteries using coal as reducing agent. J. Power Sources 157(1), 600–604 (2006)

    Article  CAS  Google Scholar 

  • L. Gaines, The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustain. Mater. Technol. 1-2, 2–7 (2014)

    Google Scholar 

  • R. Golmohammadzadeh, F. Rashchi, E. Vahidi, Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects. Waste Manag. 64, 244–254 (2017)

    Google Scholar 

  • P. Gottesfeld, A.K. Pokhrel, Lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities. J. Occup. Environ. Hyg. 8(9), 520–532 (2011)

    Article  CAS  Google Scholar 

  • E. Gratz, Q. Sa, D. Apelian, Y. Wang, A closed loop process for recycling spent lithium ion batteries. J. Power Sources 262, 255–262 (2014)

    Article  CAS  Google Scholar 

  • P.J. Hall, E.J. Bain, Energy-storage technologies and electricity generation. Energy Policy 36(12), 4352–4355 (2008)

    Article  Google Scholar 

  • C.L. Heth, Energy on demand: A brief history of the development of the battery. Substantia 3(2), 77–86 (2019)

    Google Scholar 

  • N.B. Horeh, S.M. Mousavi, S.A. Shojaosadati, Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J. Power Sources 320, 257–266 (2016)

    Article  CAS  Google Scholar 

  • Y.Y. Hung, L.T. Yin, J.W. Wang, C.T. Wang, C.H. Tsai, Y.M. Kuo, Recycling of spent nickel-cadmium battery using a thermal separation process. Environ. Prog. Sustain. Energy 37(2), 645–654 (2017)

    Article  Google Scholar 

  • S. Ilyas, J.C. Lee, Biometallurgical recovery of metals from waste electrical and electronic equipment: A review. Chem. Biol. Eng. Rev. 1, 1–23 (2014)

    Google Scholar 

  • S. Ilyas, R.R. Srivastava, H. Kim, S. Das, V.K. Singh, Circular bioeconomy and environmental benignness through microbial recycling of e-waste: A case study on copper and gold restoration. Waste Manag. 121, 175–185 (2021)

    Article  CAS  Google Scholar 

  • M.K. Jha, K. Anjan, A.K. Jha, K. Vinay, B.D. Pandey, Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag. 33, 1890–1897 (2013)

    Google Scholar 

  • A. Julander, L. Lundgren, L. Skare, M. Grandér, B. Palm, M. Vahter, C. Liden, Formal recycling of e-waste leads to increased exposure to toxic metals: An occupational exposure study from Sweden. Environ. Int. 73, 243–251 (2014)

    Article  CAS  Google Scholar 

  • G. Kannan, P. Sasikumar, K. Devika, A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling. Appl. Math. Model. 34(3), 655–670 (2010)

    Article  Google Scholar 

  • M.J. Kim, J.Y. Seo, Y.S. Choi, G.H. Kim, Bioleaching of spent Zn–Mn or Ni–Cd batteries by Aspergillus species. Waste Manag. 51, 168–173 (2016)

    Article  CAS  Google Scholar 

  • H. Kim, Y.-C. Jang, Y. Hwang, Y. Ko, H. Yun, End-of-life batteries management and material flow analysis in South Korea. Front. Environ. Sci. Eng. 12(3), 1–13 (2018)

    Google Scholar 

  • D.D.S. Leite, P.L.G. Carvalho, L.R. de Lemos, A.B.. Mageste, G.D. Rodrigues, Hydrometallurgical recovery of Zn(II) and Mn(II) from alkaline batteries waste employing aqueous two-phase system. Sep. Purif. Technol. 210, 327–334 (2019)

    Google Scholar 

  • L. Li, J. Lu, Y. Ren, X.X. Zhang, R.J. Chen, F. Wu, K. Amine, Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J. of Power Sources. 218, 21–27 (2012)

    Google Scholar 

  • J. Li, X. Yang, Y. Fu, H. Huang, Z. Zhong, Y. Wang, Recovery of Fe, Mn, Ni and Co in sulfuric acid leaching liquor of spent lithium-ion batteries for synthesis of lithium ion-sieve and NixCoyMn1-x-y(OH)2. Hydrometallurgy 190, 105190 (2019)

    Article  CAS  Google Scholar 

  • K. Liu, J. Yang, S. Liang, H. Hou, Y. Chen, J. Wang, B. Liu, K. Xiao, H. Hu, J. Wang, An emission-free vacuum chlorinating process for simultaneous sulfur fixation and lead recovery from spent lead-acid batteries. Environ. Sci. Technol. 52(4), 2235–2241 (2018)

    Article  CAS  Google Scholar 

  • L. Ma, S. Chen, H. Li, Z. Ruan, Z. Tang, Z. Liu, Z. Wang, Y. Huang, Z. Pei, J.A. Zapien, Z. Chi, Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode. Energy Environ. Sci. 11, 2521–2530 (2018)

    Article  CAS  Google Scholar 

  • J. Matheys, J.M. Timmermans, J.V. Mierlo, S. Meyer, P.V.D. Bossche, Comparison of the environmental impact of five electric vehicle battery technologies using LCA. Int. J. Sustain. Manuf. 1(3), 318 (2009)

    Google Scholar 

  • M.C. McManus, Environmental consequences of the use of batteries in low carbon systems: The impact of battery production. Appl. Energy 93, 288–295 (2012)

    Article  CAS  Google Scholar 

  • D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, Y.H. Rhee, Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag. 28(2), 333–338 (2008)

    Article  CAS  Google Scholar 

  • K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Solid State Ionics 1981(3–4), 171 (1981)

    Article  Google Scholar 

  • J. Nan, D. Han, X. Zuo, Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J. Power Sources 152, 278–284 (2005)

    Article  CAS  Google Scholar 

  • D.A. Notter, M. Gauch, R. Widmer, P. Wäger, A. Stamp, R. Zah, H.J. Althaus, Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44(17), 6550–6556 (2010)

    Article  CAS  Google Scholar 

  • S.R. Ovshinsky, M.A. Fetcenko, C. Fierro, P.R. Gifford, D.A. Corrigan, P. Benson, F.J. Martin, Enhanced nickel hydroxide positive electrode materials for alkaline rechargeable electrochemical cells, US Patent 5523182, 1996

    Google Scholar 

  • M.R. Palacin, A. deGuibert, Why do batteries fail? Science 351(6273), 1253292 (2016)

    Google Scholar 

  • D. Pant, T. Dolker, Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries. Waste Manag. 60, 689–695 (2017)

    Google Scholar 

  • P. Pathak, R.R. Srivastava, Ojasvi, Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India. Renew. Sust. Energ. Rev. 78, 220–232 (2017)

    Article  Google Scholar 

  • P. Pathak, R.R. Srivastava, Ojasvi, Environmental management of E-waste, Electronic Waste Management and Treatment Technology, P. 103–132, Elsevier, ISBN 9780128161906 (2019)

    Google Scholar 

  • P. Pathak, V.K. Singh, K. Chabhadiya, Sequential leaching of strategic metals from LNCM cathode material using organic and mineral acid lixiviants. J. of Metals. (2021) https://doi.org/10.1007/s11837-021-04631-z

  • M. Petranikova, I. Herdzik-Koniecko, B.M. Steenari, C. Ekberg, Hydrometallurgical processes for recovery of valuable and critical metals from spent car NiMH batteries optimized in a pilot plant scale. Hydrometallurgy 171, 128–141 (2017)

    Article  CAS  Google Scholar 

  • L. Pietrelli, B. Bellomo, D. Fontana, M. Montereali, Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals. Waste Manag. 25(2), 221–226 (2005)

    Article  CAS  Google Scholar 

  • G. Planté, The Storage of Electrical Energy (Whittaker, London, 1887)

    Google Scholar 

  • K. Ramus, P. Hawkins, Lead/acid battery recycling and the new Isasmelt process. J. Power Sources 42(1–2), 299–313 (1993)

    Article  CAS  Google Scholar 

  • R. Rapier, Environmental Implications of Lead acid and lithium ion batteries (2020), https://www.forbes.com/sites/rrapier/2020/01/19/environmental-implications-of-lead-acid-and-lithium-ion-batteries/#1d08b0d87bf5. Accessed 13 May 2020

  • B.H. Robinson, E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 408, 183–191 (2009)

    Article  CAS  Google Scholar 

  • C.J. Rydh, M. Karlstrom, Life cycle inventory of recycling portable nickel–cadmium batteries. Resour. Conserv. Recycl. 34(4), 289–309 (2002)

    Article  Google Scholar 

  • R. Sattar, S. Ilyas, H.N. Bhatti, A. Ghaffar, Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries. Sep. Purif. Technol. 209, 725–733 (2019a)

    Article  CAS  Google Scholar 

  • R. Sattar, S. Ilyas, S. Kousar, A. Khalid, M. Sajid, S.I. Bukhari, Recycling of end-of-life LiNixCoyMnzO2 batteries for rare metals recovery. Environ. Eng. Res. 25(1), 88–95 (2019b)

    Article  Google Scholar 

  • E. Sayilgan, T. Kukrer, G. Civelekoglu, F. Ferella, A. Akcil, F. Veglio, M. Kitis, A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries. Hydrometallurgy 97, 158–166 (2009)

    Article  CAS  Google Scholar 

  • B. Scrosati, History of lithium batteries. J. Solid State Electrochem. 15(7–8), 1623–1630 (2011)

    Article  CAS  Google Scholar 

  • R.R. Srivastava, P. Pathak, M. Perveen , Environmental and health impact due to Uranium Mining, Uranium in plants and the environment, P. 69–89, Springer Nature Switzerland, ISBN 978-3-030-14960-4 (2020)

    Google Scholar 

  • R.R. Srivastava, S. Ilyas, H. Kim, S. Choi, H.B. Trinh, M.A. Ghaurie, N. Ilyas, Biotechnological recycling of critical metals from waste printed circuit boards. Chem. Technol. Biotechnol. 95(11), 2796–2810 (2020)

    Article  CAS  Google Scholar 

  • L. Sun, K. Qiu, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag. 32, 1575–1582 (2012)

    Google Scholar 

  • K. Tang, A. Ciftja, van, der, Wilson, S., Tranell, G., Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags. J. Min. Metall. Sect. B. 49(2), 233–236 (2013)

    Article  CAS  Google Scholar 

  • X. Tian, Y. Wu, P. Hou, S. Liang, S. Qu, M. Xu, T. Zuo, Environmental impact and economic assessment of secondary lead production: Comparison of main spent lead-acid battery recycling processes in China. J. Clean. Prod. 144, 142–148 (2017)

    Article  CAS  Google Scholar 

  • N.H. Tue, A. Goto, S. Takahashia, T. Itai, K.A. Asante, T. Kunisue, S. Tanabe, Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra Ghana). J. Hazard. Mater. 302, 151–157 (2016)

    Article  CAS  Google Scholar 

  • O. Velgosová, J. Kaduková, R. Marcinčáková, P. Palfy, J. Trpčevská, Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni–Cd batteries. Waste Manag. 33(2), 456–461 (2013)

    Article  Google Scholar 

  • N. Vieceli, C.A. Nogueira, C. Guimaraes, F.C.P. Manuel, O.D. Fernando, F. Margarido, Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite. Waste Manag. 71, 350–361 (2018)

    Google Scholar 

  • X. Wang, G. Gaustad, C.W. Babbitt, K. Richa, Economies of scale for future lithium-ion battery recycling infrastructure. Resour. Conserv. Recycl. 83, 53–62 (2014)

    Article  Google Scholar 

  • M.S. Whittingham, History, evolution, and future status of energy storage. Proc. IEEE 100, 1518–1534 (2012)

    Article  CAS  Google Scholar 

  • Z. Xie, Q. Liu, Z. Chang, X. Zhang, The developments and challenges of cerium half-cell in zinc–cerium redox flow battery for energy storage. Electrochim. Acta 90, 695–704 (2013)

    Article  CAS  Google Scholar 

  • P. Xing, C. Wang, L. Wang, B. Ma, Y. Chen, Hydrometallurgical recovery of lead from spent lead-acid battery paste via leaching and electrowinning in chloride solution. Hydrometallurgy 189, 105134 (2019)

    Article  CAS  Google Scholar 

  • W. Yu, P. Zhang, J. Yang, M. Li, Y. Hu, S. Liang, J. Wang, S. Li, K. Xiao, H. Hou, J. Hu, R.V. Kumar, A low-emission strategy to recover lead compound products directly from spent lead-acid battery paste: Key issue of impurities removal. J. Clean. Prod. 210, 1534–1544 (2019)

    Article  CAS  Google Scholar 

  • Z. Zhang, G. Guo, Y. Teng, J. Wang, J.S. Rhee, S. Wang, F. Li, Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site. J. Hazard. Mater. 288, 140–146 (2015)

    Article  CAS  Google Scholar 

  • W. Zhang, J. Yang, X. Wu, Y. Hu, W. Yu, J. Wang, J. Dong, M. Li, S. Liang, J. Hu, R.V. Kumar, A critical review on secondary lead recycling technology and its prospect. Renew. Sust. Energ. Rev. 61, 108–122 (2016)

    Article  CAS  Google Scholar 

  • X. Zhang, L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu, R. Chen, Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev 47(19), 7239–7302 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pathak, P., Chabhadiya, K. (2022). Recycling of Rechargeable Batteries: A Sustainable Tool for Urban Mining. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4230-2_74

Download citation

Publish with us

Policies and ethics