Skip to main content

Advances in Microfluidic Techniques for Detection and Isolation of Circulating Tumor Cells

  • Chapter
  • First Online:
Advanced Micro- and Nano-manufacturing Technologies

Abstract

Circulating tumor cells (CTC) are released from the primary tumors into the bloodstream. These CTCs hold a crucial role in cancer metastasis; hence, they could be used for early diagnosis of cancer, evaluation of cancer development, and even helpful in drug development. In recent years, many novel microfluidic-based techniques for CTCs detection and isolation are explored. However, still, they cannot fulfill the current clinical requirement because of numerous current technological limitations. The heterogeneous nature of CTCs makes it further complicated. This chapter provides current advancements in CTC detection and isolation in a microfluidics platform. Different techniques are evaluated based on various parameters, such as purity, throughput, and cell viability. We discussed the concepts, limitations, advantages, drawbacks, and challenges, and at the end, we also discussed future application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allard, W.J., et al.: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004)

    Article  Google Scholar 

  2. Zou, D., Cui, D.: Advances in isolation and detection of circulating tumor cells based on microfluidics. Cancer Biol Med. 15(4), 335–353 (2018)

    Article  Google Scholar 

  3. Potdar, P.D., Lotey, N.K.: Role of circulating tumor cells in future diagnosis and therapy of cancer. J Cancer Metastasis Treat. 1, 44–56 (2015)

    Article  Google Scholar 

  4. Esmaeilsabzali, H., Beischlag, T.V., Cox, M.E., Parameswaran, A.M., Park, E.J.: Detection and isolation of circulating tumor cells: principles and methods. Biotechnol. Adv. 31, 1063–1084 (2013)

    Article  Google Scholar 

  5. Park, Y., et al.: Microelectrical impedance spectroscopy for the differentiation between normal and cancerous human urothelial cell lines: real-time electrical impedance measurement at an optimal frequency. Biomed. Res. Int. 2016, 10 (2016)

    Article  Google Scholar 

  6. Hecht, T.T., Mellman, I., Prindiville, S.A., Steinman, R.M., Jaye, L.: HHS Public Access. 15, 5323–5337 (2018)

    Google Scholar 

  7. Wang, H., et al.: Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat. Chem. Biol. 13, 415–424 (2017)

    Article  Google Scholar 

  8. Izumi, S., Yamamura, S., Hayashi, N., Toma, M., Tawa, K.: Dual-color fluorescence imaging of EpCAM and EGFR in breast cancer cells with a bull’s eye-type plasmonic chip. Sensors (Switzerland) 17 (2017)

    Google Scholar 

  9. Shi, W., et al.: Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices. Lab Chip 17, 3291–3299 (2017)

    Article  Google Scholar 

  10. Seal, S.H.: A sieve for the isolation of cancer cells and other large cells from the blood. Cancer 17, 637–642 (1964)

    Article  Google Scholar 

  11. Mohamed, H., Murray, M., Turner, J.N., Caggana, M.: Isolation of tumor cells using size and deformation. J. Chromatogr. A 1216, 8289–8295 (2009)

    Article  Google Scholar 

  12. Liu, Z., et al.: High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosens. Bioelectron. 47, 113–119 (2013)

    Article  Google Scholar 

  13. Au, S.H., et al.: Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci. Rep. 7, 1–10 (2017)

    Article  Google Scholar 

  14. Sun, N., Li, X., Wang, Z., Li, Y., Pei, R.: High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method. Biosens. Bioelectron. 102, 157–163 (2018)

    Article  Google Scholar 

  15. Sajeesh, P., Manasi, S., Doble, M., Sen, A.K.: A microfluidic device with focusing and spacing control for resistance-based sorting of droplets and cells. Lab Chip 15, 3738–3748 (2015)

    Article  Google Scholar 

  16. Raj, A., Dixit, M., Doble, M., Sen, A.K.: A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel. Lab Chip 17, 3704–3716 (2017)

    Article  Google Scholar 

  17. Hazra, S., et al.: Non-inertial lift induced migration for label-free sorting of cells in a co-flowing aqueous two-phase system. Analyst 144, 2574–2583 (2019)

    Article  Google Scholar 

  18. Morijiri, T., Sunahiro, S., Senaha, M., Yamada, M., Seki, M.: Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluid. Nanofluidics 11, 105–110 (2011)

    Article  Google Scholar 

  19. Burger, R., Ducrée, J.: Handling and analysis of cells and bioparticles on centrifugal microfluidic platforms. Expert Rev. Mol. Diagn. 12, 407–421 (2012)

    Article  Google Scholar 

  20. Al-Faqheri, W., et al.: Particle/cell separation on microfluidic platforms based on centrifugation effect: a review. Microfluid. Nanofluid. 21 (2017)

    Google Scholar 

  21. Burger, R., et al.: Centrifugal microfluidics for cell analysis. Curr. Opin. Chem. Biol. 16, 409–414 (2012)

    Article  Google Scholar 

  22. Hou, H.W., et al.: Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1–8 (2013)

    Article  Google Scholar 

  23. Park, J.M., et al.: Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal. Chem. 84, 7400–7407 (2012)

    Article  Google Scholar 

  24. Karthick, S., Pradeep, P.N., Kanchana, P., Sen, A.K.: Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis. Lab Chip 18, 3802–3813 (2018)

    Article  Google Scholar 

  25. Carey, T.R., Cotner, K.L., Li, B., Sohn, L.L.: Developments in label-free microfluidic methods for single-cell analysis and sorting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, 1–17 (2019)

    Article  Google Scholar 

  26. Sun, T., Morgan, H.: Single-cell microfluidic impedance cytometry: a review. Microfluid. Nanofluid. 8, 423–443 (2010)

    Article  Google Scholar 

  27. Chung, Y.K., et al.: An electrical biosensor for the detection of circulating tumor cells. Biosens. Bioelectron. 26, 2520–2526 (2011)

    Article  Google Scholar 

  28. Gu, G.: A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci. Rep. 9, 6419 (2019)

    Article  Google Scholar 

  29. Segre, G.: Radial particle displacement in poiseuille flow of suspensions. Nature 189, 209–210 (1961)

    Article  Google Scholar 

  30. Di Carlo, D., Irimia, D., Tompkins, R.G., Toner, M.: Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U.S.A. 104, 18892–18897 (2007)

    Article  Google Scholar 

  31. Di Carlo, D., Edd, J.F., Irimia, D., Tompkins, R.G., Toner, M.: Equilibrium separation and filtration of particles using differential inertial focusing. Anal. Chem. 80, 2204–2211 (2008)

    Article  Google Scholar 

  32. Bhagat, A.A.S., Kuntaegowdanahalli, S.S., Papautsky, I.: Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8, 1906–1914 (2008)

    Article  Google Scholar 

  33. Kittilsland, G., Stemme, G., Nordén, B.: A sub-micron particle filter in silicon. Sens. Actuators, A: Phys. 23, 904–907 (1990)

    Article  Google Scholar 

  34. Stemme, G., Kittilsland, G.: New fluid filter structure in silicon fabricated using a self-aligning technique. Appl. Phys. Lett. 53, 1566–1568 (1988)

    Article  Google Scholar 

  35. Gu, Y., Miki, N.: A microfilter utilizing a polyethersulfone porous membrane with nanopores. J. Micromech. Microeng. 17, 2308–2315 (2007)

    Article  Google Scholar 

  36. Moorthy, J., Beebe, D.J.: In situ fabricated porous filters for microsystems. Lab Chip 3, 62–66 (2003)

    Article  Google Scholar 

  37. Aran, K., et al.: Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery. Lab Chip 11, 2858–2868 (2011)

    Article  Google Scholar 

  38. Sajeesh, P., Sen, A.K.: Particle separation and sorting in microfluidic devices: a review. Microfluid. Nanofluid. 17, 1–52 (2014)

    Article  Google Scholar 

  39. Wilding, P., et al.: Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal. Biochem. 257, 95–100 (1998)

    Article  Google Scholar 

  40. Wu, C.C., Hong, L.Z., Ou, C.T.: Blood cell-free plasma separated from blood samples with acascading weir-type microfilter using dead-end filtration. J. Med. Biol. Eng. 32, 163–168 (2012)

    Article  Google Scholar 

  41. Ji, H.M., et al.: Silicon-based microfilters for whole blood cell separation. Biomed. Microdevices 10, 251–257 (2008)

    Article  Google Scholar 

  42. Chen, J., et al.: Blood plasma separation microfluidic chip with gradual filtration. Microelectron. Eng. 128, 36–41 (2014)

    Article  Google Scholar 

  43. Yoon, Y., et al.: Clogging-free microfluidics for continuous size-based separation of microparticles. Sci. Rep. 6, 1–8 (2016)

    Article  Google Scholar 

  44. Chen, X., Cui, D.F., Liu, C.C., Li, H.: Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens. Actuators, B: Chem. 130, 216–221 (2008)

    Article  Google Scholar 

  45. Di, H., Martin, G.J.O., Dunstan, D.E.: A microfluidic system for studying particle deposition during ultrafiltration. J. Memb. Sci. 532, 68–75 (2017)

    Article  Google Scholar 

  46. Dalili, A., Samiei, E., Hoorfar, M.: A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 144, 87–113 (2019)

    Article  Google Scholar 

  47. Hughes, M.P.: Fifty years of dielectrophoretic cell separation technology. Biomicrofluidics 10, 1–9 (2016)

    Article  Google Scholar 

  48. Hughes, M.P.: Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23, 2569–2582 (2002)

    Article  Google Scholar 

  49. Alshareef, M., et al.: Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 7, 1–12 (2013)

    Article  Google Scholar 

  50. Cheng, I.F., et al.: Antibody-free isolation of rare cancer cells from blood based on 3D lateral dielectrophoresis. Lab Chip 15, 2950–2959 (2015)

    Article  Google Scholar 

  51. Das, D., Biswas, K., Das, S.: A microfluidic device for continuous manipulation of biological cells using dielectrophoresis. Med. Eng. Phys. 36, 726–731 (2014)

    Article  Google Scholar 

  52. Alazzam, A., Mathew, B., Alhammadi, F.: Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. J. Sep. Sci. 40, 1193–1200 (2017)

    Article  Google Scholar 

  53. Chan, J.Y., et al.: Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics 12 (2018)

    Google Scholar 

  54. Chan, J.Y., et al.: Dielectrophoretic deformation of breast cancer cells for lab on a chip applications. Electrophoresis 40, 2728–2735 (2019)

    Article  Google Scholar 

  55. Chinen, A.B., et al.: Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115, 10530–10574 (2017)

    Article  Google Scholar 

  56. Scholtens, T.M., et al.: Automated identification of circulating tumor cells by image cytometry. Cytometry Part A 81 A, 138–148 (2012)

    Article  Google Scholar 

  57. Etcheverry, S., et al.: High performance micro-flow cytometer based on optical fibres. Sci. Rep. 7, 5628 (2017)

    Article  Google Scholar 

  58. Siudzi, A., Siudzi, A.: Fluorescent sensing with Fresnel microlenses for optofluidic systems. Opt. Eng. 56(5), 057106 (2017)

    Article  Google Scholar 

  59. Wall, T., et al.: Optofluidic lab-on-a-chip fluorescence sensor using integrated buried ARROW (bARROW) waveguides. Micromachines 8, 1–9 (2017)

    Article  MathSciNet  Google Scholar 

  60. Kang, H., Kim, J., Cho, H., Han, K.H.: Evaluation of positive and negative methods for isolation of circulating tumor cells by lateral magnetophoresis. Micromachines 10 (2019)

    Google Scholar 

  61. Liang, W., et al.: Microfluidic-based cancer cell separation using active and passive mechanisms. Microfluid. Nanofluid. 24, 26 (2020)

    Article  Google Scholar 

  62. Sesen, M., Alan, T., Neild, A.: Microfluidic plug steering using surface acoustic waves. Lab Chip 15, 3030–3038 (2015)

    Article  Google Scholar 

  63. Hemachandran, E., Laurell, T., Sen, A.K.: Continuous droplet coalescence in a microchannel coflow using bulk acoustic waves. Phys. Rev. Appl. 12, 044008 (2019)

    Article  Google Scholar 

  64. Srivastava, A., Karthick, S., Jayaprakash, K.S., Sen, A.K.: Droplet demulsification using ultralow voltage-based electrocoalescence. Langmuir 34, 1520–1527 (2018)

    Article  Google Scholar 

  65. Banerjee, U., Mandal, C., Jain, S.K., Sen, A.K.: Cross-stream migration and coalescence of droplets in a microchannel co-flow using magnetophoresis. Phys. Fluids 31, 112003 (2019)

    Article  Google Scholar 

  66. Schenck, J.F.: Physical interactions of static magnetic fields with living tissues. Prog. Biophys. Mol. Biol. 87, 185–204 (2005)

    Article  Google Scholar 

  67. Nagrath, S., et al.: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007)

    Article  Google Scholar 

  68. Wang, C., et al.: Biomaterials Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials 54, 55–62 (2015)

    Article  Google Scholar 

  69. Zheng, G., Patolsky, F., Cui, Y., et al.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005)

    Article  Google Scholar 

  70. Thong, J.T.L., Lim, C.T., Loh, K.P.: Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett. 11(12), 5240–5246 (2011)

    Article  Google Scholar 

  71. Liberti, M.V., Locasale, J.W.: The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 287 (2016)

    Article  Google Scholar 

  72. Ben, F.D., et al.: A method for detecting circulating tumor cells based on the measurement of single-cell metabolism in droplet-based microfluidics. Angew. Chem. Int. Ed. Engl. 55(30), 8581–8584 (2016)

    Article  Google Scholar 

  73. Li, Z., Ruan, J., Zhuang, X.: Effective capture of circulating tumor cells from an S180-bearing mouse model using electrically charged magnetic nanoparticles. J Nanobiotechnol. 17, 59 (2019)

    Article  Google Scholar 

  74. Chen, B., et al.: Targeting negative surface charges of cancer cells by multifunctional nanoprobes. Theranostics 6(11), 1887–1898 (2016)

    Article  Google Scholar 

  75. Ozkumur, E., et al.: Inertial focusing for tumor antigen—dependent and—independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5(179), 179ra47 (2013)

    Article  Google Scholar 

  76. Li, Z., et al.: Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2, 245–247 (2004)

    Article  Google Scholar 

  77. Chung, Y., et al.: Silicon nanograss based impedance biosensor for label free detection of rare metastatic cells among primary cancerous colon cells, suitable for more accurate cancer staging Biosensors and Bioelectronics An electrical biosensor for the detection of circul. Biosens. Bioelectron. 26, 2520–2526 (2018)

    Article  Google Scholar 

  78. Cho, H., et al.: Microfluidic technologies for circulating tumor cell isolation. Analyst 143, 2936–2970 (2018)

    Article  Google Scholar 

  79. Yu, M., Stott, S., Toner, M., Maheswaran, S., Haber, D.A.: Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–382 (2011)

    Article  Google Scholar 

  80. Godin, J., et al.: Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip. J. Biophotonics 1, 355–376 (2008)

    Article  Google Scholar 

  81. Li, X., Ballerini, D.R., Shen, W.: A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mirkale, K., Gaikwad, R., Majhy, B., Narendran, G., Sen, A.K. (2022). Advances in Microfluidic Techniques for Detection and Isolation of Circulating Tumor Cells. In: Joshi, S.N., Chandra, P. (eds) Advanced Micro- and Nano-manufacturing Technologies. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-3645-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3645-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3644-8

  • Online ISBN: 978-981-16-3645-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics