Skip to main content
Log in

Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A simple and efficient device for density-based particle sorting is in high demand for the purification of specific cells, bacterium, or environmental particles for medical, biochemical, and industrial applications. Here we present microfluidic systems to achieve size- and density-based particle separation by adopting the sedimentation effect for a size-based particle sorting technique utilizing microscale hydrodynamics, called “pinched-flow fractionation (PFF).” Two schemes are presented: (a) the particle inertia scheme, which utilizes the inertial force of particle movement induced by the momentum change in the curved microchannel, and (b) the device rotation scheme, in which rotation of the microdevice exerts centrifugal force on the flowing particles. In the experiments, we successfully demonstrated continuous sorting of microparticles according to size and density by using these two schemes, and showed that the observed particle movements were in good agreement with the theoretical estimations. The presented schemes could potentially become one of the functional components for integrated bioanalysis systems that can manipulate/separate small amount of precious biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

PFF:

Pinched-flow fractionation

References

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8:1906–1914. doi:10.1039/b807107a

    Article  Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 86:3828–3832

    Article  Google Scholar 

  • Chesnot T, Schwartzbrod J (2004) Quantitative and qualitative comparison of density-based purification methods for detection of Cryptosporidium oocysts in turbid environmental matrices. J Microbiol Methods 58:375–386. doi:10.1016/j.mimet.2004.05.001

    Article  Google Scholar 

  • Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci USA 104:18892–18897. doi:10.1073/pnas.0704958104

    Article  Google Scholar 

  • Doh I, Cho YH (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators A 121:59–65. doi:10.1016/j.sna.2005.01.030

    Article  Google Scholar 

  • English D, Andersen BR (1974) Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods 5:249–252. doi:10.1016/0022-1759(74)90109-4

    Article  Google Scholar 

  • Fuh CB, Myers MN, Giddings JC (1994) Centrifugal SPLITT fractionation: new technique for separation of colloidal particles. Ind Eng Chem Res 33:355–362

    Article  Google Scholar 

  • Haeberle S, Brenner T, Zengerle R, Ducrée J (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6:776–781. doi:10.1039/b604145k

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990. doi:10.1126/science.1094567

    Article  Google Scholar 

  • Huh D, Bahng JH, Ling Y, Wei HH, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79:1369–1376. doi:10.1021/ac061542n

    Article  Google Scholar 

  • Jäggi RD, Sandoz R, Effenhauser CS (2007) Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels. Microfluid Nanofluid 3:47–53. doi:10.1007/s10404-006-0104-9

    Article  Google Scholar 

  • Jones RJ, Wagner JE, Celano P, Zicha MS, Sharkis SJ (1990) Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347:188–189. doi:10.1038/347188a0

    Article  Google Scholar 

  • Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980. doi:10.1039/B908271A

    Article  Google Scholar 

  • Lindqvist R, Norling B, Lambertz ST (1997) A rapid sample preparation method for PCR detection of food pathogens based on buoyant density centrifugation. Lett Appl Microbiol 24:306–310

    Article  Google Scholar 

  • Nilsson A, Petersson F, Jönsson H, Laurell T (2004) Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4:131–135. doi:10.1039/b313493h

    Article  Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659. doi:10.1039/b712784g

    Article  Google Scholar 

  • Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980. doi:10.1039/b604542a

    Article  Google Scholar 

  • Park JS, Jung H (2009) Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal Chem 81:8280–8288. doi:10.1021/ac9005765

    Article  Google Scholar 

  • Petersson F, Nilsson A, Holm C, Jönsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5:20–22. doi:10.1039/b405748c

    Article  Google Scholar 

  • Rambaldi A, Borleri G, Dotti G, Bellavita P, Amaru R, Biondi A, Barbui T (1998) Innovative two-step negative selection of granulocyte colony-stimulating factor-mobilized circulating progenitor cells: adequacy for autologous and allogeneic transplantation. Blood 91:2189–2196

    Google Scholar 

  • Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6:83–89. doi:10.1039/b512049g

    Article  Google Scholar 

  • Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778–784. doi:10.1039/b501885d

    Article  Google Scholar 

  • Yamada T, Ohyama H (1980) Separation of the dead cell fraction from X-irradiated rat thymocyte suspensions by density gradient centrifugation. Int J Radiat Biol 37:695–699

    Google Scholar 

  • Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239. doi:10.1039/b509386d

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471. doi:10.1021/ac049863r

    Article  Google Scholar 

  • Yoon DH, Ha JB, Bahk YK, Arakawa T, Shoji S, Go JS (2009) Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab Chip 9:87–90. doi:10.1039/b809123d

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-aid for Scientific Research A (20241031) from Ministry of Education, Culture, Science, and Technology (MEXT), Japan, and for Improvement of Research Environment for Young Researchers from Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Seki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Details of the modeling of particle behaviors.

Supplementary material 1 (PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morijiri, T., Sunahiro, S., Senaha, M. et al. Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluid Nanofluid 11, 105–110 (2011). https://doi.org/10.1007/s10404-011-0785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0785-6

Keywords

Navigation