Skip to main content

Entomopathogenic Viruses

  • Chapter
  • First Online:
Microbial Approaches for Insect Pest Management

Abstract

India has moved from an era of food shortages to a status of food self-sufficiency through improved modern agricultural technologies and sustainable agricultural practices. However, various constraints exist during the cultivation of the crop, which limits its production and productivity. In achieving the green revolution, chemicals have played a significant role in improving production and productivity. Nevertheless, continuous and indiscriminate use of insecticides pollute the environment and create health hazards to human beings. In this regard, biological control is an alternative strategy, which will be eco-friendly, cost-effective, restores soil fertility, and provides residue-free products. Of late, entomopathogenic bioagents have been exploited by the scientists for the management of various insect pests in modern agriculture. Of the various bioagents, viruses are being used as a promising tool for the management of economically important insect pests. Various viruses, viz.  Nucleopolyhedrovirus (NPV), Granulosis viruses (GV) and Cytoplasmic Polyhedrosis viruses were used for the management of insect pests throughout the world. The host-specific viral particles are ingested by the insects and the virions infect the gut wall cells, fat body, and hemolymph, leading to death of the insects. The characteristics of the entomopathogenic viruses and the molecular mechanisms by which they infect and kill the insects needs to be explored in a detailed manner. Insect virus formulations have been developed by various research groups throughout the world and used for the management of insect pests. However, the mode of action, pathogenicity, time and duration of infection, specificity, persistence, etc. need to be considered for the development of stable and effective formulations. This review will highlight the characteristics of insect viruses, pathogenicity and mode of action, various formulations and their application in the management of insect pests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JR, McClintock JT (1991) Baculoviridae, nuclear polyhedrosis viruses part 1. Nuclear polyhedrosis viruses of insects. In: Adams JR, Bonami JR (eds) Atlas of invertebrate viruses. CRC Press, Boca Raton, FL, pp 87–204

    Google Scholar 

  • Adams J, Stadelbacher E, Tompkins G (1979) A new virus-like particle isolated from the cotton bollworm, Heliothis zea biological control. Ann Meet Electron Microsc Soc Am 30:238–249

    Google Scholar 

  • Afolami OI, Oladunmoye MK (2017) Baculoviruses: emerging frontiers for viral biocontrol of insect pests of agricultural importance. J Adv Microbiol 5(4):1–7

    Article  Google Scholar 

  • Ahrens CH, Rohrmann GF (1995) Replication of Orgyia pseudotsugata baculovirus DNA: lef-2 and ie-1 are essential and ie-2, p34, and Op-iap are stimulatory genes. Virology 212:650–662

    Article  CAS  PubMed  Google Scholar 

  • Ardisson-Araújo DM, Melo FL, Clem RJ, Wolff JL, Ribeiro BM (2016) A betabaculovirus-encoded gp64 homolog codes for a functional envelope fusion protein. J Virol 90(3):1668–1672

    Article  PubMed  PubMed Central  Google Scholar 

  • Arrizubieta M, Williams T, Caballero P, Simon O (2014) Selection of a nucleopolyhedrovirus isolate from Helicoverpa armigera as the basis for a biological insecticide. Pest Manag Sci 70(6):967–976

    Article  CAS  PubMed  Google Scholar 

  • Arunkarthick S, Asokan R, Aravintharaj R, Niveditha M, Krishna Kumar NK (2017) A review of insect cell culture: establishment, maintenance and applications in entomological research. J Entomol Sci 52(3):261–273

    Article  Google Scholar 

  • Asgari S, Bideshi DK, Bigot Y, Federici BA, Cheng X, ICTV (2017) Report consortium, 2017, ICTV virus taxonomy profile: Ascoviridae. J Gen Virol 98:4–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605

    Article  CAS  PubMed  Google Scholar 

  • Bailey L, Gibbs AJ, Woods RD (1964) Sacbrood virus of the larval honey bee (Apis mellifera linnaeus). Virology 23:425–429

    Article  CAS  PubMed  Google Scholar 

  • Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35(3):235–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ban L, Didon A, Jonsson LM, Glinwood R, Delp G (2007) An improved detection method for the Rhopalosiphum padi virus (RhPV) allows monitoring of its presence in aphids and movement within plants. J Virol Methods 142:136–142

    Article  CAS  PubMed  Google Scholar 

  • Bedford GO (2013) Biology and management of palm dynastid beetles: recent advances. Annu Rev Entomol 58:353–372

    Article  CAS  PubMed  Google Scholar 

  • Bergold G (1947) Die Isolierung des Polyeder-Virus und die Natur der Polyeder. Z Naturforsch 2b:122–143

    Article  CAS  Google Scholar 

  • Berns KI, Bergoin M, Bloom M, Lederman M, Muzyczka N, Siegl G, Tal J, Tattersall P (1995) Parvoviridae. Arch Virol Suppl 10:169–178

    Google Scholar 

  • Bézier A, Thézé J, Gavory F, Gaillard J, Poulain J, Drezen JM, Herniou EA (2015) The genome of the nucleopolyhedrosis-causing virus from Tipula oleracea sheds new light on the Nudiviridae family. J Virol 89(6):3008–3025

    Article  PubMed  Google Scholar 

  • Bideshi DK, Tan Y, Bigot YA, Federici BA (2005) Viral caspase contributes to modified apoptosis for virus transmission. Genes Dev 19:1416–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bideshi DK, Bigot Y, Federici BA, Spears T (2010) Ascoviruses. In: Asgari S, Johnson KN (eds) Insect virology. Caister Academic Press, Norfolk, pp 3–34

    Google Scholar 

  • Bird FT, Whalen MM (1954) Stages in the development of two insect viruses. Can J Microbiol 1:170–174

    Article  CAS  PubMed  Google Scholar 

  • Bixby-Brosi AJ, Potter DA (2010) Evaluating a naturally occurring baculovirus for extended biological control of the black cutworm (Lepidoptera: Noctuidae) in golf course habitats. J Econ Entomol 103:1555–1563

    Article  PubMed  Google Scholar 

  • Black BC, Brennan LA, Dierks PM, Gard IE (1997) Commercialization of baculoviral insecticides. In: Lois KM (ed) The baculoviruses. Springer, Berlin, pp 341–387

    Chapter  Google Scholar 

  • Blissard GW (1996) Baculovirus–insect cell interactions. Cytotechnology 20:73–93

    Article  CAS  PubMed  Google Scholar 

  • Bolle G (1894) Il giallume od il mal del grasso del baco da seta. Communicazione preliminare. Atti. E Mem. Dell’ I.R. Soc Agric Gorizia 34:133–136

    Google Scholar 

  • Bonning BC (2009) The dicistroviridae: an emerging family of invertebrate viruses. Virol Sin 24:415

    Article  Google Scholar 

  • Boucias DG, Maruniak JE, Pendland JC (1987) Characterization of an iridovirus isolated from the sourthern mole cricket, Scapteriscus vicinus. J Invertebr Pathol 50:238–245

    Article  CAS  Google Scholar 

  • Boyapalle S, Pal N, Miller WA, Bonning BC (2007) A glassywinged sharpshooter cell line supports replication of Rhopalosiphum padi virus (Dicistroviridae). J Invertebr Pathol 94:130–139

    Article  CAS  PubMed  Google Scholar 

  • Buerger P, Hauxwell C, Murray D (2007) Nucleopolydrovirus introduction in Australia. Virol Sin 22:173–179

    Article  CAS  Google Scholar 

  • Cao G, Meng X, Xue R, Zhu Y, Zhang X, Pan Z, Zheng X, Gong C (2012) Characterization of the complete genome segments from BmCPV-SZ, a novel Bombyx mori cypovirus 1 isolate. Can J Microbiol 58:872–883

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Tripp J, Bonning BC, Miller WA (2014) Challenges associated with research on RNA viruses of insects. Curr Opin Insect Sci 6:1–7

    Google Scholar 

  • Chakrabarti M, Ghorai S, Mani SKK, Ghosh AK (2010) Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus. Virol J 7:181–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YP, Siede R (2007) Honey bee viruses. Adv Virus Res 70:33–80

    Article  CAS  PubMed  Google Scholar 

  • Chen XX, van Achtenberg C (2019) Systematics, phylogeny & evolution of braconid wasps: 30 years of progress. Annu Rev Entomol 64:335–358

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Liu H, Mo B-C, Hu J, Liu S-Q, Bustos-Segura C, Xue J, Wang X (2020) Growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae infected by Heliothis virescens ascovirus 3i (HvAV-3i). Front Physiol 11:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry AJ, Rabindra RJ, Parnell MA, Geetha N, Kennedy JS, Grzywacz D (2000) Field evaluation of Helicoverpa armigera nucleopolyhedrovirus formulations for control of the chickpea pod-borer, H. armigera (Hubn.), on chickpea (Cicer arietinum var. Shoba) in southern India. Crop Prot 19:51–60

    Article  Google Scholar 

  • Chishti MZ, Schaf KA (1990) Studies on the polyhedral disease of silkworm, Bombyx mori in Jammu & Kashmir State. Indian J Seric 29(1):155–157

    Google Scholar 

  • Chu GK, Xie RD, Zhang HJ, Yao YE, Fang ZJ (1975) On a nuclear polyhedrosis virus of mulberry tussock moth, Euproctis similis Fuessly (Lepidoptera: Lymantridae) and field test for the moth control. Acta Microbiol Sin 15:93–100. (in Chinese)

    Google Scholar 

  • Cotmore SF, Tattersall P (1996) Parvovirus DNA replication. Cold Spring Harbor Monograph Arch 31:799–813

    CAS  Google Scholar 

  • Cuartas-Otálora PE, Gómez-Valderrama JA, Ramos AE, Barrera-Cubillos GP, Villamizar-Rivero LF (2019) Bio-insecticidal potential of nucleopolyhedrovirus and granulovirus mixtures to control the fall armyworm Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae). Viruses 11:684

    Article  PubMed Central  Google Scholar 

  • Drezen J-M, Chevignon G, Louis F, Huguet E (2014) Origin and evolution of symbiotic viruses associated with parasitoid wasps. Curr Opin Insect Sci 6:35–43

    Article  PubMed  Google Scholar 

  • Dupuy C, Huguet E, Drezen J-M (2006) Unfolding the evolutionary history of polydnaviruses. Virus Res 117:81–89

    Article  CAS  PubMed  Google Scholar 

  • Eberle KE, Jehle JA, Hüber J (2012) Microbial control of crop pests using insect viruses. In: Abrol DP, Shankar U (eds) Integrated pest management: principles and practice. CABI Publishing, Wallingford, pp 281–298

    Chapter  Google Scholar 

  • Edson KM, Vinson SB, Stoltz DB, Summers MD (1981) Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid’s host. Science 211:582–583

    Article  CAS  PubMed  Google Scholar 

  • El-Far M, Szelei J, Yu Q, Fediere G, Bergoin M, Tijssen P (2012) Organization of the ambisense genome of the Helicoverpa armigera densovirus. J Virol 86:7024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elvira S, Ibargutxi MA, Gorria N, Munoz D, Caballero P, Williams T (2013) Insecticidal characteristics of two commercial Spodoptera exigua nucleopolyhedrovirus strains produced on different host colonies. Biol Microbial Control 106:50–56

    Google Scholar 

  • Epstein L (2014) Fifty years since ‘silent spring’. Annu Rev Phytopathol 52:377–402

    Article  CAS  PubMed  Google Scholar 

  • Erlandson MA, Streett DA (1997) Entomopoxviruses associated with grasshoppers and locusts: biochemical characterization. Memoirs Entomol Soc Canada 129(S171):131–146

    Article  Google Scholar 

  • Etebari K, Filipović I, Rašić G, Devine GJ, Tsatsia H, Furlong MJ (2020) Complete genome sequence of Oryctes rhinoceros nudivirus isolated from the coconut rhinoceros beetle in Solomon Islands. Virus Res 278:197864

    Article  CAS  PubMed  Google Scholar 

  • FAO (2019) The state of food and agriculture. Moving forward on food loss and waste reduction. FAO, Rome

    Google Scholar 

  • Federici BA (1983) Enveloped double-stranded DNA insect virus with novel structure and cytopathology. PNAS 1 80(24):7664–7668

    Article  CAS  Google Scholar 

  • Fleming JG, Summers MD (1991) PDV DNA is integrated in the DNA of its parasitoid wasp host. Proc Natl Acad Sci USA 88:9770–9774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francki RIB, Fauquet CM, Knudson D, Brown F (1991) Classification and nomenclature of viruses. In: Fifth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag, Wien, New York, p 452

    Google Scholar 

  • Fujiyuki T, Takeuchi H, Ono M, Ohka S, Sasaki T, Nomoto A, Kubo T (2004) Novel insect picorna-like virus identified in the brains of aggressive worker honeybees. J Virol 78:1093–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuxa JR (1982) Prevalence of viral infections in populations of fall armyworm,Spodoptera frugiperda, in southeastern Louisiana. Environ Entomol 11:239–242

    Article  Google Scholar 

  • Fuxa JR (2004) Ecology of nucleopolyhedroviruses. Agric Ecosyst Environ 103:27–43

    Article  Google Scholar 

  • Gani M, Gupta RK, Zargar SM, Kour G, Monobrullah M, Kandasamy T, Mohanasundaram A (2017) Molecular identification and phylogenetic analyses of multiple nucleopolyhedrovirus isolated from Lymantria obfuscata (Lepidoptera: Lymantriidae) in India. Appl Entomol Zool 52:389–399

    Article  CAS  Google Scholar 

  • Ghorai S, Chakrabarti M, Roy S, Chavali VRM, Bagchi A, Ghosh AK (2010) Molecular characterization of genome segment 2 encoding RNA dependent RNA polymerase of Antheraea mylitta cytoplasmic polyhedrosis virus. Virology 404:21–31

    Article  CAS  PubMed  Google Scholar 

  • Glaser RW (1918) The polyhedral virus of insects with a theoretical consideration of filterable viruses generally. Science 48:301–302

    Article  CAS  PubMed  Google Scholar 

  • Glaser RW, Chapman JW (1913) The wilt disease of gypsy moth caterpillars. J Econ Entomol 6:479–488

    Article  Google Scholar 

  • Gomi S, Zhou CE, Yih W, Majima K, Maeda S (1997) Deletion analysis of four of eighteen late gene expression factor gene homologues of the baculovirus, BmNPV. Virology 230:35–47

    Article  CAS  PubMed  Google Scholar 

  • Gomi S, Majima K, Maeda S (1999) Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol 80(5):1323–1337

    Article  CAS  PubMed  Google Scholar 

  • Goodwin RH, Milner RJ, Beaton CD (1991) Entomopoxvirinae. In: Adams JR et al (eds) Atlas of invertebrate viruses. CRC Press, Boca Ratón, pp 259–285

    Google Scholar 

  • Goorha R, Murti KG (1982) The genome of frog virus 3, an animal DNA virus, is circularly permuted and terminally redundant. Proc Natil Acad Sci USA 79:248–252

    Article  CAS  Google Scholar 

  • Grzywacz D, Moore S (2017) Production, formulation & bioassay of baculoviruses for pest control. In: Lacey LA (ed) Microbial control of insect and mite pests (Chapter 7). Academic Press, Amsterdam, pp 109–124

    Chapter  Google Scholar 

  • Grzywacz D, Mushobozi W, Parnell M, Jolliffe F, Wilson K (2008) The evaluation of Spodoptera exempta nucleopolyhedrovirus (SpexNPV) for the field control of African armyworm (Spodoptera exempta) in Tanzania. Crop Prot 27:17–24

    Article  Google Scholar 

  • Grzywacz D, Stevenson PC, Mushobozi WL, Belmain S, Wilson K (2014) The use of indigenous ecological resources for pest control in Africa. Food Sec 6:71–86

    Article  Google Scholar 

  • Gupta RK, Gani M, Kaul V, Bhagat RM, Bali K, Samnotra RK (2016) Field evaluation of Lymantria obfuscata multiple nucleopolyhedrovirus for the management of Indian gypsy moth in Jammu and Kashmir, India. Crop Prot 80:149–158

    Article  Google Scholar 

  • Hamm JJ, Pair SD, Marti OG (1986) Incidence and host range of a new ascovirus isolated from fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla Entomol 69:524–531

    Article  Google Scholar 

  • Harrison R, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega F, Kaya H (eds) Insect pathology. Elsevier, Amsterdam, pp 73–131

    Chapter  Google Scholar 

  • Harrison R, Herniou E, Jehle J, Theilmann D, Burand J, Becnel J, Krell P, van Oers M, Mowery J, Bauchan G (2018) ICTV report consortium. ICTV virus taxonomy profile: baculoviridae. J Gen Virol 99:1185–1186

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Valles SM (2007) Solenopsis invicta virus-1 tissue tropism and intra-colony infection rate in the red imported fire ant: a quantitative PCR-based study. J Invertebr Pathol 96:156–161

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Ko R, Okano K, Seong S, Goto C, Maeda S (1999) Sequence analysis of the Xestia C-Nigrum granulovirus genome. Virology 262:277–297

    Article  CAS  PubMed  Google Scholar 

  • Herniou EA, Olszewski JA, Cory JS, O’Reilly (2003) The genome sequence and evolution of baculoviruses. Annu Rev Entomol 48:211–234

    Article  CAS  PubMed  Google Scholar 

  • Herniou EA, Arif BM, Becnel JJ, Blissard GW, Bonning B, Harrison R, Jehle JA, Theilmann DA, Vlak JM (2012) Family baculoviridae. In: Andrew MQ et al (eds) Virus taxonomy, classification and nomenclature of viruses, ninth report of the international committee on taxonomy of viruses. Elsevier Academic Press, Amsterdam, pp 163–173

    Google Scholar 

  • Hu Z, Luijckx T, Dinten LC, Oers MM, Hajós JP, Bianchi FJ, Lent JW, Zuidema D, Vlak JM (1999) Specificity of polyhedrin in the generation of baculovirus occlusion bodies. J Gen Virol 80:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Huang GH, Garretson TA, Cheng XH, Holztrager MS, Li SJ, Wang X, Cheng XW (2012) Phylogenetic position and replication kinetics of Heliothis virescens ascovirus 3h (HvAV-3h) isolated from Spodoptera exigua. PLoS One 7(7):e40225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber J (1986) Use of baculovirus in pest management programs. In: Granados RR, Federici BA (eds) The biology of baculoviruses, Vol. 2, Practical applications for insect control. CRC Press, Boca Raton, FL, pp 181–202

    Google Scholar 

  • Huger AM (1966) A virus disease of the Indian Rhinoceros beetle, Oryctes Rhinoceros (Linnaeus), caused by a new type of insect virus, Rhabdinovirus Oryctes gen. N., sp. n. J Invertebr Pathol 8:38–51

    Article  CAS  PubMed  Google Scholar 

  • Hukuhara T, Hayakawa T, Wijonarko A (1999) Increased baculovirus susceptibility of armyworm larvae feeding on transgenic rice plants expressing an entomopoxvirus gene. Nat Biotechnol 17:1122–1124

    Article  CAS  PubMed  Google Scholar 

  • Hull R (2014) Plant virology, 5th edn. Academic Press, Waltham, MA, p 1104

    Google Scholar 

  • Hunnicutt LE, Mozoruk J, Hunter WB, Crosslin JM, Cave RD, Powell CA (2008) Prevalence and natural host range of Homalodisca coagulate virus-1 (HoCV-1). Arch Virol 153:61–67

    Article  CAS  PubMed  Google Scholar 

  • Hussain B, Sivakumar G, Kannan M, War AR, Ballal CR (2019) First record of a nucleopolyhedrovirus infecting brown-tail moth larvae, Euproctis chrysorrhoea (L.) (Lepidoptera: Lymantriidae) in India. Egyptian J Biol Pest Control 29:11

    Article  Google Scholar 

  • Ibarra JE, Del Rincón-Castro CM (2009) Insect viruses diversity, biology and use as bioinsecticides. In: Del Claro K et al (eds) Tropical biology and conservation management, Volume 7: Phytopathology and entomology. EOLSS Publications, p 304

    Google Scholar 

  • Ignoffo CM, Couch TL (1981) The nucleopolyhedrosis virus of Heliothis species as a microbial pesticide. In: Burges HD (ed) Microbial control of pests and plant diseases. Academic, London, pp 329–362

    Google Scholar 

  • Ijiri H, Coulibaly F, Nishimura G, Nakai D, Chiu E, Takenaka C, Ikeda K, Nakazawa H, Hamada N, Kotani E, Metcalf P, Kawamata S, Mori H (2009) Structure-based targeting of bioactive proteins into cypovirus polyhedra and application to immobilized cytokines for mammalian cell culture. Biomaterials 30:4297–4308

    Article  CAS  PubMed  Google Scholar 

  • IJkel WF, Westenberg M, Goldbach RW, Blissard GW, Vlak JM, Zuidema D (2000) A novel baculovirus envelope fusion protein with a proprotein convertase cleavage site. Virology 275(1):30–41

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa Y, Tanabe H, Nakayama C, Asayama T (1966) Studies on the nuclear polyhedrosis of Porthesia xanthocampa. J Sericult Sci Japan 35:174–180

    Google Scholar 

  • Ishimori N (1934) Contribution a l’e’tude de la grasserie du ver a´ soie (Bombyx mori). C.R. Seances Soc. Biol. Soc Franco Japonaise Biol 116:1169–1170

    Google Scholar 

  • Jarvis DL, Bohlmeyer DA, Garcia A (1991) Requirements for nuclear localization and supramolecular assembly of a baculovirus polyhedrin protein. Virology 185:795–810

    Article  CAS  PubMed  Google Scholar 

  • Javed MA, Biswas S, Willis LG, Harris S, Pritchard C, Van Oers MM, Donly BC, Erlandson MA, Hegedus DD, Theilmann DA (2017) Autographa californica multiple nucleopolyhedrovirus AC83 is a per os infectivity factor (PIF) protein required for occlusion-derived virus (ODV) and budded virus nucleocapsid assembly as well as assembly of the PIF complex in ODV envelopes. J Virol 91:02115–02116

    Article  Google Scholar 

  • Jehle JA, Lange M, Wang HL, Hu ZH, Wang YJ, Hauschild R (2006) Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346(1):180–193

    Article  CAS  PubMed  Google Scholar 

  • Ji, X., Sutton,G., Evans, G., Axford, D., Owen, R., & Stuart, D.I (2010) How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J, 29:505–514

    Google Scholar 

  • Jiang L, Xia QY (2014) The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem Mol Biol 48:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kabaluk JT, Svircev AM, Goette MS, Woo SG (2010) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global 99

    Google Scholar 

  • Kalawate A (2014) Microbial viral insecticides. In: Sahayaraj K (ed) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 47–68

    Chapter  Google Scholar 

  • Kalha C, Singh P, Kang S, Hunjan M, Gupta V, Sharma R (2014) Entomopathogenic viruses and bacteria for insect–pest control. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspective. Academic Press, San Diego, CA, pp 225–244

    Chapter  Google Scholar 

  • Katsuma S, Tanaka S, Omuro N, Takabuchi L, Daimon T, Imanishi S, Yamashita S, Iwanaga M, Mita K, Maeda S, Kobayashi M, Shimada T (2005) Novel macula-like virus identified in Bombyx mori cultured cells. J Virol 79:5577–5584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr CH, Wang QS, Keatings K, Khong A, Allan D, Yip CK, Foster LJ, Jan E (2015) The 5′ untranslated region of a novel infectious molecular clone of the dicistrovirus cricket paralysis virus modulates infection. J Virol 89:5919–5934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korth KL, Levings CS (1993) Baculovirus expression of maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae. Proc Natl Acad Sci U S A 90:3388–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn JH (2020) Virus taxonomy. Reference module in life sciences, B978-0-12-809633-8.21231-4.

    Google Scholar 

  • Kunimi Y (2007) Current status and prospects on microbial control in Japan. J Invertebr Pathol 95:181–186

    Article  PubMed  Google Scholar 

  • Kuzio J, Pearson MN, Harwood SH, Funk CJ, Evans JT, Slavicek JM, Rohrmann GF (1999) Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar. Virology 253:17–34

    Article  CAS  PubMed  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lai-Fook J, Dall DJ (2000) Spindle bodies of Heliothis armigera entomopoxvirus develop in structures associated with host cell endoplasmic reticulum. J Invertebr Pathol 75:183–192

    Article  CAS  PubMed  Google Scholar 

  • Lasa R, Pagola I, Ibanex I, Belda JE, Williams T, Caballero P (2007) Efficacy of Spodoptera exigua multiple nucleopolyhedrovirus as a biological insecticide for beet armyworm control in greenhouse of southern Spain. Biocontrol Sci Tech 17:221–232

    Article  Google Scholar 

  • Lei C, Yang J, Wang J, Hu J, Sun X (2020) Molecular and biological characterization of Spodoptera frugiperda multiple Nucleopolyhedrovirus field isolate and genotypes from China. Insects 11:777

    Article  PubMed Central  Google Scholar 

  • Li Q, Li L, Moore K, Donly C, Theilmann DA, Erlandson M (2003) Characterization of Mamestra configurata nucleopolyhedrovirus enhancin and its functional analysis via expression in an Autographa californica M nucleopolyhedrovirus recombinant. J Gen Virol 84:123–132

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tan L, Li Y, Chen W, Zhang J, Hu Y (2006) Identification and genome characterization of Heliothis armigera cypovirus types 5 and 14 and Heliothis assulta cypovirus type 14. J Gen Virol 87:387–394

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Hopkins RJ, Zhao YP, Zhang YX, Hu J, Chen XY, Xu Z, Huang GH (2016) Imperfection works: survival, transmission and persistence in the system of Heliothis virescens ascovirus 3h (HvAV-3h), Microplitis similis and Spodoptera exigua. Sci Rep 6:21296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maestri A (1856) Frammenti anatomici, fisiologici e patologici sul baco da seta. Fratelli Fusi, Pavia

    Google Scholar 

  • Manousis T, Arnold MK, Moore NF (1988) Electron microscopical examination of tissues and organs of Dacus oleae flies infected with cricket paralysis virus. J Invertebr Pathol 51:119–125

    Article  Google Scholar 

  • Martignoni ME (1999) History of TM BioControl-1: the first registered virus-based product for control of a forest insect. Am Entomol 45:30–37

    Article  Google Scholar 

  • Martignoni ME, Iwai PJ (1986) A catalogue of viral diseases of insects, mites, and ticks. USFS Pacific Northwest Research Station General Technical Report PNW-195

    Google Scholar 

  • Mayo MA (2002) A summary of taxonomic changes recently approved by ICTV. Arch Virol 147:1655–1663

    Article  CAS  PubMed  Google Scholar 

  • Merian MS (1679) Del’ Raupen Wunderbare Verwandelung, und Sonderbare Blumennahrung. J. A. Graff, Niirnberg, p 155

    Google Scholar 

  • Merryweather AT, Weyer U, Harris MPG, Hirst M, Booth T, Possee RD (1990) Construction of genetically engineered baculovirus inscticides containing the Bacillus thuringiensis subsp. kurstaki HD-73 delta endotoxin. J Gen Virol 71:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Mettenmeyer A (2002) Viral insecticides hold promise for bio-control. Farming Ahead 124:50–51

    Google Scholar 

  • Miele SAB, Garavaglia MJ, Belaich MN, Ghiringhelli PD (2011) Baculovirus: molecular insights on their diversity and conservation. Int J Evol Biol 15:379424

    Google Scholar 

  • Monsma SA, Oomens AGP, Blissard GW (1996) The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70:4607–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore SD, Kirkman W, Richards GI, Stephen P (2015) The Cryptophlebia leucotreta granulovirus - 10 years of commercial field use. Viruses 7:1284–1312

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreau G, Lucarotti CJ (2007) A brief review of the past use of baculoviruses for the management of eruptive forest defoliators and recent developments on a sawfly virus in Canada. For Chron 83:105–112

    Article  Google Scholar 

  • Mori H, Metcalf P (2010) Cypoviruses. In: Asgari S, Johnson KN (eds) Insect virology. Caister Academic Press, Great Britain, p 436

    Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289

    Article  CAS  PubMed  Google Scholar 

  • Moscardi F, Allen GE, Greene GL (1981) Control of the velvetbean caterpillar by nuclear polyhedrosis virus and insecticides and impact of treatments on the natural incidence of the entomopathogenic fungus nomuraea rileyi. J Econ Entomol 74(4):480–485

    Article  CAS  Google Scholar 

  • Moscardi F, Souza ML, Castro MEB, Moscardi ML, Szewczyk B (2011) Baculovirus pesticides: present state and future perspectives. In: Ahmad I et al (eds) Microbes and microbial technology. Springer, New York, pp 415–445

    Chapter  Google Scholar 

  • Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (eds) (1995) Virus taxonomy - the classification and nomenclature of viruses: sixth report of the international committee on taxonomy of viruses. Springer-Verlag, NewYork

    Google Scholar 

  • Mutuel D, Ravellac M, Chabi B, Multeau C, Salmon J-M, Fournier P, Ogliastro M (2010) Pathogenesis of Junonia coenia densovirus in Spodoptera frugiperda: a route of infection that leads to hypoxia. Virology 403:137–144

    Article  CAS  PubMed  Google Scholar 

  • Nysten PH (1808) Recherches sur les maladies des vers a soie et les moyens de les pre’venir. De L’Imprimerie Impe’riale, Paris

    Google Scholar 

  • Olson S (2015) An analysis of the biopesticide market now and where is going. Outlooks Pest Manag 26:203–206

    Article  Google Scholar 

  • Paillot A (1933) L’infection Chez Les Insectes. G. Patissier, ‘I’revoux, p 535

    Google Scholar 

  • Pal N, Boyapalle S, Beckett R, Miller WA, Bonning BC (2007) A baculovirus-expressed dicistrovirus that is infectious to aphids. J Virol 81:9339–9345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant U, Sudeep AB, Athawale SS, Vipat VC (2002) Baculovirus studies in new indigenous lepidopteran cell lines. Indian J Exp Biol 40(1):63–68

    CAS  PubMed  Google Scholar 

  • Papp T, Marschang RE (2019) Detection and characterization of invertebrate Iridoviruses found in reptiles and prey insects in Europe over the past two decades. Viruses 11:600

    Article  CAS  PubMed Central  Google Scholar 

  • Park B, Kim Y (2012) Immunosuppression induced by expression of a viral RNase enhances susceptibility of Plutella xylostella to microbial pesticides. Insect Sci 19:47–54

    Article  CAS  Google Scholar 

  • Parker KM, Sander M (2017) Environmental fate of insecticidal plant-incorporated protectants from genetically modified crops: knowledge gaps and research opportunities. Environ Sci Technol 51:12049–12057

    Article  CAS  PubMed  Google Scholar 

  • Patel RC, Patel JK, Patel PB, Singh RB (1968) Nuclear polyhedrosis of gram pod borer, Heliothis armigera. J Econ Entomol 61:191–193

    Article  Google Scholar 

  • Perera S, Li Z, Pavlik L, Arif B (2010) Entomopoxviruses. In: Asgari S, Johnson K (eds) Insect virology. Caister Academic Press, Norfolk, pp 83–102

    Google Scholar 

  • Pijlman GP, Dortmans JCFM, Vermeeschm AMG, Yang K, Martens RW, Goldbach RW, Vlak JM (2002) Pivotal role of the non-hr origin of DNA replication in the genesis of defective interfering baculoviruses. J Virol 76:5605–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poinar G, Poinar R (2005) Fossil evidence of insect pathogens. J Invertebr Pathol 89:243–250

    Article  PubMed  Google Scholar 

  • Possee RD (1997) Baculoviruses as expression vectors. Curr Opin Biotechnol 8:569–572

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar CS, Choudhary A, Choudhary JS, Sood P, Mehta PK (2017) Role of insect viruses in the management of insect pests. In: Anwer A (ed) Biopesticides and bioagents: novel tools for pest management. Apple Academic Press Inc., Waretown, NJ, pp 209–238

    Chapter  Google Scholar 

  • Quicke DLJ, Laurenne NM, Fiton MG, Broad GR (2009) A thousand and one wasps: a 28S rDNA and morphological phylogeny of the Ichneumonidae (Insecta: Hymenoptera) with an investigation into alignment parameter space and elision. J Nat Hist 43:1305–1321

    Article  Google Scholar 

  • Radek R, Fabel P (2000) A new entomopoxvirus from a cockroach: light and electron microscopy. J Invertebr Pathol 75:19–27

    Article  CAS  PubMed  Google Scholar 

  • Rao GVR, Rupela OP, Rameshwar Rao V, Reddy YVR (2007) Role of biopesticides in crop protection: present status and future prospects. Indian J Plant Protect 35:1–9

    Google Scholar 

  • Reardon R, Podgwaite JP, Zerillo RT (1996) GYPCHEK - the gypsy moth nucleopolyhedrosis virus product. USDA Forest Service Publication FHTET-96–16

    Google Scholar 

  • Rhode SL, Iversen P (1990) Parvovirus genomes - DNA sequences. In: Tijssen P (ed) Handbook of parvoviruses, vol 1. CRC Press, Boca Raton, FL, pp 31–57

    Google Scholar 

  • Rhodes DJ (1996) Economics of baculovirus-insect cell production systems. Cytotechnology 20:291–297

    Article  CAS  PubMed  Google Scholar 

  • Rohrmann GF (2013) Baculovirus molecular biology. In: National center for biotechnology 1434 Information (US), 3rd edn, Bethesda, MD

    Google Scholar 

  • Rohrmann GF (2019) Baculovirus molecular biology, 4th edn. National Center for Biotechnology Information (US), Bethesda, MD. https://www.ncbi.nlm.nih.gov/books/NBK543458/

    Google Scholar 

  • Rowley DL, Pophamb HJR, Harrison RL (2011) Genetic variation and virulence of nucleopolyhedroviruses isolated worldwide from the heliothine pests Helicoverpa armigera, Helicoverpa zea, and Heliothis virescens. J Invertebr Pathol 107:112–126

    Article  PubMed  Google Scholar 

  • Ruzicka J (1924) Die Neusten Erfahrungen Uber Die Nonne in Bohmen. Cent Ges Forsta 50:33–68

    Google Scholar 

  • Ryabov EV, Keane G, Naish N, Evered C, Winstanley D (2009) Densovirus induces winged morphs in asexual clones of the rosy apple aphid, Dysaphis plantaginea. Proc Natl Acad Sci U S A 106:8465–8470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajjan DB, Hinchigeri SB (2016) Structural organization of baculovirus occlusion bodies and protective role of multilayered polyhedron envelope protein. Food Environ Virol 8:86–100

    Article  CAS  PubMed  Google Scholar 

  • Sauer AJ, Schulze-Bopp S, Fritsch E, Undorf-Spahn K, Jehle JA (2017) A third type of resistance to Cydia pomonella granulovirus in codling moths shows a mixed Z-linked and autosomal inheritance pattern. Appl Environ Microbiol 83:e01036–e01017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt O, Theopold U, Strand M (2001) Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays 23:344–351

    Article  CAS  PubMed  Google Scholar 

  • Senthil Kumar CM, Jacob TK, Devasahayam S, Silva SD, Jinsha J, Rajna S (2015) Occurrence and characterization of a tetrahedral nucleopolyhedrovirus from Spilarctia obliqua (Walker). J Invertibr Patholol 132:135–142

    Article  CAS  Google Scholar 

  • Sinha-Datta U, Chavali VRM, Ghosh AK (2005) Molecular cloning and characterization of Antheraea mylitta cytoplasmic polyhedrosis virus polyhedrin gene and its variant forms. Biochem Biophys Res Commun 332:710–718

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar G, Kannan M, Ramesh Babu V, Mohan M, Kumari S, Rangeshwaran R, Venkatesan T, Ballall CR (2020a) Characterization and field evaluation of tetrahedral and triangular nucleopolyhedrovirus of Spilosoma obliqua (SpobNPV) strain NBAIR1 against jute hairy caterpillar. Egyptian J Biol Pest Control 30:1–7

    Article  Google Scholar 

  • Sivakumar G, Kannan M, Ramesh Babu V, Mohan M, Sampath Kumar M, Raveendran P, Venkatesan T, Rangeshwaran R, Ballall CR, Ram Kumar P (2020b) Isolation and characterization of indigenous nucleopolyhedrovirus infecting new invasive fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in India. Curr Sci 119:860–864

    Article  Google Scholar 

  • Slavicek J (2012) Baculovirus enhancins and their role in viral pathogenicity. In: Adoga MP (ed) Molecular biology. IntechOpen, Rijeka, Croatia, pp 147–168

    Google Scholar 

  • Souza ML, Castro MEB, Barros AML, Sihler W, Moscardi F (2001) Ana’lise, de DNA de isolados de nucleopolyhedrovirus de Anticarsia gemmatalis utilizados no controle da lagarta da soja no Brasil. Boletim de Pesquisa e Desenvolvimento Embrapa Recursos Gene’ticos e Biotecnologia

    Google Scholar 

  • Steinhaus EA (1949) Principles of insect pathology. McGraw-Hill Book Co., Inc., New York, p 757

    Google Scholar 

  • Steinhaus EA, Thompson CG (1949) Granulosis disease in the buckeye caterpillar Junonia coenia Hubner. Science 110:276–278

    Article  CAS  PubMed  Google Scholar 

  • Stoltz DB, Vinson SB (1979) Viruses and parasitism in insects. Adv Virus Res 24:125–171

    Article  CAS  PubMed  Google Scholar 

  • Strand MR, Burke GR (2015) Polydnaviruses: from discovery to current insights. Virology 479–480:393–402

    Article  PubMed  Google Scholar 

  • Strand MR, Burke GR (2019) Polydnaviruses: evolution and function. In: Bonning BC (ed) Insect molecular virology. Advances and emerging trends. Caister Academic Press, Poole, Dorset, pp 163–181

    Google Scholar 

  • Sun X (2015) History and current status of development and use of viral insecticides in China. Viruses 7:306–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Szewczyk B, Hoyos-Carvajal L, Paluszek M, Skrzecz W, de Souza ML (2006) Baculoviruses-re-emerging biopesticides. Biotechnol Adv 24:143–160

    Article  CAS  PubMed  Google Scholar 

  • Takov D, Pilarska D, Linde A, Barta M (2021) Infectious and parasitic diseases of phytophagous insect pests in the context of extreme environmental conditions. Central Eur Forestry J 67

    Google Scholar 

  • Tan L, Zhang J, Li Y, Jiang H, Cao X, Hu Y (2008) The complete nucleotide sequence of the type 5 Helicoverpa armigera cytoplasmic polyhedrosis virus genome. Virus Genes 36:587–593

    Article  CAS  PubMed  Google Scholar 

  • Tanada Y (1964) A Granulosis virus of the codling moth, Carpocapsa pomonella (Linnaeus) (Olethreutidae, Lepidoptera). J Insect Pathol 8:378–380

    Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic Press, Inc., San Diego, CA

    Google Scholar 

  • Taylor MW (2014) Introduction: a short history of virology. In: Taylor MW (ed) Viruses and man: a history of interactions. Springer, Swizerland, pp 1–22

    Chapter  Google Scholar 

  • Thao M, Wineriter S, Buckingham G, Baumann B (2001) Genetic characterization of a putative Densovirus from the mealybug, Planococcus citri. Curr Microbiol 43:457–458

    Article  CAS  PubMed  Google Scholar 

  • Thézé J, Bézier A, Periquet G, Drezen J-M, Herniou EA (2011) Paleozoic origin of insect large dsDNA viruses. Proc Natl Acad Sci U S A 108(38):15931–15935

    Article  PubMed  PubMed Central  Google Scholar 

  • Theze J, Takatsuka J, Li Z, Gallais J, Doucet D, Arif B, Nakai M, Herniou EA (2013) New insights into the evolution of Entomopoxvirinae from the complete genome sequences of four entomopoxviruses infecting Adoxophyes honmai, Choristoneura biennis, Choristoneura rosaceana & Mythimna separata. J Virol 87:7992–8003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillman PG, Styer EL, Hamm JJ (2004) Transmission of ascovirus from Heliothis virescens (Lepidoptera: Noctuidae) by three parasitoids and effects of virus on survival of parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). Environ Entomol 33:633–643

    Article  Google Scholar 

  • Tufts DM, Hunter WB, Bextine B (2014) Solenopsis invicta virus (Sinv-1) infection and insecticide interactions in the red imported fire ant (Hymenoptera: Formicidae). Fla Entomol 97:1251–1254

    Article  Google Scholar 

  • Vago C (1963) A new type of insect virus. J Insect Pathol 5:275–276

    Google Scholar 

  • Valles SM, Porter SD, Choi MY, Oi DH (2013) Successful transmission of Solenopsis invicta virus 3 to Solenopsis invicta fire ant colonies in oil, sugar and cricket bait formulations. J Invertebr Pathol 113:198–204

    Article  PubMed  Google Scholar 

  • van Munster M, Dullemans AM, Verbeek M, van den Heuvel JF, Reinbold C, Brault V, Clérivet A, van der Wilk F (2003) Characterization of a new densovirus infecting the green peach aphid Myzus persicae. J Invertebr Pathol 84(1):6–14

    Article  PubMed  Google Scholar 

  • van Oers MM, Vlak JM (2007) Baculovirus genomics. Curr Drug Targ 8(10):1051–1068. Bentham Science Publishers

    Article  Google Scholar 

  • van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23

    Article  PubMed  Google Scholar 

  • Vida, M.H (1527) The Silkworm (Bombycum): a poem in two books. Translated into English by S. Pullein (1750). S. Powell, Dublin

    Google Scholar 

  • Volkman LE, Goldsmith PA (1985) Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by monoclonal antibody: inhibition of entry by adsorptive endocytosis. Virology 143:185–195

    Article  CAS  PubMed  Google Scholar 

  • Wamonje FO, Michuki GN, Braidwood LA, Njuguna JN, Musembi Mutuku J, Djikeng A, Harvey JJW, Carr JP (2017) Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus. Virol J 14:188

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Bosch BJ, Vlak JM, van Oers MM, Rottier PJ, van Lent JWM (2016) Budded baculovirus particle structure revisited. J Invertebr Pathol 134:15–22

    Article  PubMed  Google Scholar 

  • Wang X, Shang Y, Chen C, Liu S, Chang M, Zhang N, Hu H, Zhang F, Zhang T, Wang Z, Liu X, Lin Z, Deng F, Wang H, Zou Z, Vlak JM, Wang M, Hu Z (2019) Baculovirus per os infectivity factor complex: components and assembly. J Virol 93:e02053–e02018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warsaba R, Sadasivan J, Jan E (2020) Dicistroviruses: host molecular interactions. Curr Issues Mol Biol 34:83–112

    Article  PubMed  Google Scholar 

  • Watanabe H, Aratake Y (1974) Two isolates of a nuclear-Polyhedrosis virus of the Brown-tail moth, Euproctis similis, exhibiting different inclusion body shapes. J Invertibr Patholol 24:383–386

    Article  CAS  Google Scholar 

  • Webb BA, Strand MR (2005) The biology and genomics of polydnaviruses. In: Gilbert LI et al (eds) Comprehensive molecular insect science, vol 6. Elsevier, San Diego, CA, pp 323–360

    Chapter  Google Scholar 

  • Wei YL, Hu J, Li SJ, Chen ZS, Cheng XW, Huang GH (2014) Genome sequence and organization analysis of Heliothis virescens ascovirus 3f isolated from a Helicoverpa zea larva. J Invertebr Pathol 122:40–43

    Article  CAS  PubMed  Google Scholar 

  • White GF (1917) Sacbrood. U.S. Dep Agric Bull 431:1–55

    Google Scholar 

  • Williams T (1996) The Iridoviruses. Adv Virus Res 46:345–412

    Article  CAS  PubMed  Google Scholar 

  • Wilson K, Grzywacz D, Curcic I, Scoates F, Harper K, Rice A, Paul N, Dillon A (2020) A novel formulation technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation. Sci Rep 10:13301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XK, Ge P, Jiang JS, Atanasov I, Zhou ZH (2011) Atomic model of CPV reveals the mechanism used by this single-shelled virus to economically carry out functions conserved in multishelled Reoviruses. Structure 19:652–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Fediere G, Abd-Alla A, Bergoin M, Tijssen P (2012) Iteravirus-like genome organization of a densovirus from Sibine fusca Stoll. J Virol 86:8897–8898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GY, Sun XL, Zhang ZX, Zhang ZF, Wan FF (1995) Production and effectiveness of the new formulation of Helicoverpa virus pesticide-emulsifiable suspension. Virol Sin 10:242–247

    Google Scholar 

  • Zhou Y, Qin T, Xiao Y, Qin F, Lei C, Sun X (2014) Genomic and biological characterization of a new cypovirus isolated from Dendrolimus punctatus. PLoS One 9:e113201

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Liu S, Song W, Luo S, Meng G, Yang C, Yang H, Ma J, Wang L, Gao S, Wang J, Yang H, Zhao Y, Wang H, Zhou Z (2018) Characterization of viral RNA splicing using whole-transcriptome datasets from host species. Sci Rep 8:3273

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Harish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harish, S., Murugan, M., Kannan, M., Parthasarathy, S., Prabhukarthikeyan, S.R., Elango, K. (2021). Entomopathogenic Viruses. In: Omkar (eds) Microbial Approaches for Insect Pest Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-3595-3_1

Download citation

Publish with us

Policies and ethics