Skip to main content

Microbial Ecology

  • Chapter
  • First Online:
Actinobacteria

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Microbes usually occur in vast communities. Many reports state that the species richness can be enormous even in a small quantity of soil or water, indicating the complex interactions among different microbial habitats in communities. Moreover, differences in physicochemical conditions led to the establishment of unique communities in each environment, such as in water, sediment, soil, plants, fungi, protozoa, and animals. Since many centuries of coexistence of these diverse communities in different habitats have led to the essential adaptation and speciation. One of the extremely important bacterial phyla in these communities is Actinobacteria. Understanding the microbial ecology, i.e., importance of Actinobacteria as part of the activities of these microbial communities, is among the utmost important, challenging, and fascinating areas of science. This pattern of colonizing microbial community distribution can trigger various complex interactions such as mutualism, symbiotic association, and antagonistic or pathogenic and parasitic relationships. Many scientists have indicated that the bioactive compounds or secondary metabolites recovered from the microorganisms are involved in these microbial interactions, often in low quantities. One of the major challenges of the researchers is to produce medically important drugs, which can be achieved through complex microbial interactions. These microbial interactions take part as pivotal role in the development and preservation of colonization with beneficial and harmful properties, including infective microorganisms. In addition to this, activated host defense mechanisms can able to produce antimicrobial agents against the harmful organisms in the environment. Microbial interactions or communications are also affecting gene regulation within microbial communities and in host organisms in response to the infections caused by the pathogenic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Araújo WL, Creason AL, Mano ET, Camargo-Neves AA, Minami SN, Chang JH, Loper JE (2016) Genome sequencing and transposon mutagenesis of Burkholderia seminalis TC3.4.2R3 identify genes contributing to suppression of orchid necrosis caused by B. gladioli. Mol Plant-Microbe Interact 29:435–446

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Rybakova D, Grube M, Koberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom CT, Lipsitch M, Levin BR (2000) Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 155:1505–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley AS, Pearson A, Sáenz JP, Marx CJ (2010) Adenosylhopane: the first intermediate in hopanoid side chain biosynthesis. Org Geochem 41:1075–1081

    Article  CAS  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Article  CAS  PubMed  Google Scholar 

  • Brickman T, Armstrong S (2009) Temporal signaling and differential expression of Bordetella iron transport systems: the role of ferrimones and positive regulators. Biometals 22:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamoun R, Jabaji S (2011) Expression of genes of Rhizoctonia solani and the biocontrol Stachybotrys elegans during mycoparasitism of hyphae and sclerotia. Mycologia 103:483–493

    Article  CAS  PubMed  Google Scholar 

  • Chamoun R, Aliferis KA, Jabaji S (2015) Identification of signatory secondary metabolites during mycoparasitism of Rhizoctoni asolani by Stachybotrys elegans. Front Microbiol 6:353

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  PubMed  Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357

    Article  CAS  PubMed  Google Scholar 

  • Dourado MN, Santos DS, Nunes LR, da Costa de Oliveira RLB, de Oliveira MV, Araújo WL (2015) Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6. J Basic Microbiol 55:1357–1366

    Article  CAS  PubMed  Google Scholar 

  • Dykhuizen DE (1998) Santa Rosalia revisited: why are there so many species of bacteria? Antonie Van Leeuwenhoek 73:25–33

    Article  CAS  PubMed  Google Scholar 

  • Faraldo-Gómez JD, Sansom MSP (2003) Acquisition of siderophores in Gram-negative bacteria. Nat Rev Mol Cell Biol 4:105–116

    Article  PubMed  CAS  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial–fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan LL, Kanoh K, Kamino K (2001) Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron-limited conditions. Appl Environ Microbiol 67:1710–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayachandra SY, Parameshwar AB, Mohan Reddy K, Sulochana MB (2012a) Characterization of extracellular hydrolytic enzymes producing extremely halophilic bacterium Virgibacillus sp. JS5. World J Sci Technol 2(2):23–26

    CAS  Google Scholar 

  • Jayachandra SY, Anil Kumar S, Merley DP, Sulochana MB (2012b) Isolation and characterization of extreme halophilic bacterium Salinicoccus sp. JAS4 producing extracellular hydrolytic enzymes. Recent Res Sci Technol 4(4):46–49

    CAS  Google Scholar 

  • Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65

    Article  CAS  PubMed  Google Scholar 

  • Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44:6320–6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL (2012) Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J 6:158–170

    Article  CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Knights D, Costello EK, Knight R (2011) Supervised classification of human microbiota. FEMS Microbiol Rev 35:343–359

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni G, Busset N, Molinaro A, Gargani D, Chaintreuil C, Silipo A, Giraud E, Newman DK (2015) Specific hopanoid classes differentially affect free-living and symbiotic states of Bradyrhizobium diazoefficiens. MBio 6:e01251–e01315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacava PT, Araújo WL, Marcon J, Maccheroni W Jr, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 99:7072–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Lara IM, Sohlenkamp C, Geiger O (2003) Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant-Microbe Interact 16:567–579

    Article  PubMed  Google Scholar 

  • Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63:9923–9932

    Article  CAS  Google Scholar 

  • Mayr E (1957) In: Mayr E (ed) The species problem. American Association for the Advancement of Science, Washington, DC, pp 1–22

    Google Scholar 

  • McCormick SP, Stanley AM, Stover NA, Alexander NJ (2011) Trichothecenes: from simple to complex mycotoxins. Toxins 3:802–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS (1996) In: van Strien S, Verduyn Lunel Sjoerd M, Verduyn Lunel SM (eds) Stochastic and spatial structures of dynamical systems. North Holland, Amsterdam, pp 183–231

    Google Scholar 

  • Mohan Reddy K, Siva Deepthi S, Parameshwar AB, Jayachandra SY, Sulochana MB (2015a) Thermo and alkali tolerant exo-inulinase produced by Streptomyces sp. isolated from unexplored terrestrial habitat. Int J Curr Res Acad Rev 3(10):354–363

    Google Scholar 

  • Mohan Reddy K, Siva Deepthi S, Jayachandra SY, Parameshwar AB, Dayanand A, Bikshapathi E, Sulochana MB (2015b) In silico structural analysis for exo-inulinases in proteomes of Streptomyces sp. using PDB structures as templates. Int J Curr Microbiol Appl Sci 4(11):858–867

    Google Scholar 

  • Morissette DC, Dauch A, Beech R, Masson L, Brousseau R, Jabaji-Hare S (2008) Isolation of mycoparasitic-related transcripts by SSH during interaction of the mycoparasite Stachybotrys elegans with its host Rhizoctonia solani. Curr Genet 53:67–80

    Article  CAS  PubMed  Google Scholar 

  • Muller EEL, Hourcade E, Louhichi-Jelail Y, Hammann P, Vuilleumier S, Bringel F (2011) Functional genomics of dichloromethane utilization in Methylobacterium extorquens DM4. Environ Microbiol 13:2518–2535

    Article  CAS  PubMed  Google Scholar 

  • Nalin R, Putra SR, Domenach A-M, Rohmer M, Gourbiere F, Berry AM (2000) High hopanoid/total lipids ratio in Frankia mycelia is not related to the nitrogen status. Microbiology 146:3013–3019

    Article  CAS  PubMed  Google Scholar 

  • Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, Schroeckh V, Brakhage AA (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nützmann H-W, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schümann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A 108:14282–14287

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh D-C, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericell amides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520

    Article  CAS  PubMed  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  CAS  PubMed  Google Scholar 

  • Partida-Martinez LP, Monajembashi S, Greulich K-O, Hertweck C (2007) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17:773–777

    Article  CAS  PubMed  Google Scholar 

  • Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial–fungal interactions. Nat Rev Microbiol 8:340–349

    Article  CAS  PubMed  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of rhizobium-meliloti nodulation genes. Science 233:977–980

    Article  CAS  PubMed  Google Scholar 

  • Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME (2012) Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 25:193–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Phelan VV, Liu W-T, Pogliano K, Dorrestein PC (2012) Microbial metabolic exchange—the chemotype-to-phenotype link. Nat Chem Biol 8:26–35

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    Article  CAS  PubMed  Google Scholar 

  • Ross C, Opel V, Scherlach K, Hertweck C (2014) Biosynthesis of antifungal and antibacterial polyketides by Burkholderia gladioli in coculture with Rhizopus microsporus. Mycoses 57:48–55

    Article  CAS  PubMed  Google Scholar 

  • Sáenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O, Broda M, Simons K (2015) Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc Natl Acad Sci U S A 112:11971–11976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  • Schmerk CL, Bernards MA, Valvano MA (2011) Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. J Bacteriol 193:6712–6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Shuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106:14558–14563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seipke RF, Loria R (2009) Hopanoids are not essential for growth of Streptomyces scabies 87-22. J Bacteriol 191:5216–5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim BMQ, Chantratita N, Ooi WF, Nandi T, Tewhey R, Wuthiekaun V, Thaipadungpanit J, Tumapa S, Ariyaratne P, Sung W-K, Sem XH, Chua HH, Ramnarayanan K, Lin CH, Liu Y, Feil EJ, Glass MB, Tan G, Peacock SJ, Tan P (2010) Genomic acquisition of a capsular polysaccharide virulence cluster by non-pathogenic Burkholderia isolates. Genome Biol 11:R89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spratt BG, Staley JT, Fisher MC (2006) Introduction: species and speciation in microorganisms. Phil Trans R Soc B 365:1897–1898

    Article  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  PubMed  Google Scholar 

  • Stuart LM, Paquette N, Boyer L (2013) Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat Rev Immunol 13:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulochana MB, Jayachandra SY, Anil Kumar S, Parameshwar AB, Mohan Reddy K, Dayanand A (2014a) Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25. Appl Biochem Biotechnol 174(1):297–308. https://doi.org/10.1007/s12010-014-1039-3

    Article  CAS  PubMed  Google Scholar 

  • Sulochana MB, Jayachandra SY, Anil Kumar SK, Dayanand A (2014b) Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. J Basic Microbiol 54(5):418–424. https://doi.org/10.1002/jobm.201200770

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Shaanker RU (2015) Fungal endophytes—biology and bioprospecting preface. Curr Sci India 109:37–38

    Google Scholar 

  • Tarkka MT, Sarniguet A, Frey-Klett P (2009) Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions. Curr Genet 55:233–243

    Article  CAS  PubMed  Google Scholar 

  • Tata A, Perez C, Campos ML, Bayfield MA, Eberlin MN, Ifa DR (2015) Imprint desorption electrospray ionization mass spectrometry imaging for monitoring secondary metabolites production during antagonistic interaction of fungi. Anal Chem 87:12298–12304

    Article  CAS  PubMed  Google Scholar 

  • Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 4:e00459–e00413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uzum Z, Silipo A, Lackner G, De Felice A, Molinaro A, Hertweck C (2015) Structure, genetics and function of an exopolysaccharide produced by a bacterium living within fungal hyphae. ChemBioChem 16:387–392

    Article  CAS  PubMed  Google Scholar 

  • van Elsas JD, Chiurazzi M, Mallon CA, Elhottovã D, Krištůfek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 109:1159–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Virgin HW, Todd JA (2011) Metagenomics and personalized medicine. Cell 147:44–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitz JS, Hartman H, Levin SA (2005) Coevolutionary arms races between bacteria and bacteriophage. Proc Natl Acad Sci U S A 102:9535–9540

    Google Scholar 

  • Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK (2009) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J Bacteriol 191:6145–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wertz JE, Goldstone C, Gordon DM, Riley MA (2003) A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16:1236–1248

    Google Scholar 

  • Yaradoddi JS, Shoba H, Banapurmath NR, Hunashyal AM, Sulochana MB, Shettar AS, Ganachari SV (2018) Alternative and renewable bio-based and biodegradable plastics. In: Martínez LMT, Kharissova OV (eds) Handbook of ecomaterials. Springer International Publishing AG, Cham. https://doi.org/10.1007/978-3-319-68255-6_150

    Chapter  Google Scholar 

  • Yaradoddi J, Kontro M, Ganachari S, Sulochana M, Agsar D, Tapaskar R, Shettar A (2019) Protein nanotechnology (Dr. Kharisov BI (Editor-in-Chief) Handbook of ecomaterials). Springer, pp 3573–3585. https://doi.org/10.1007/978-3-319-682556_192

  • Yaradoddi JS, Sulochana MB, Kontro MH, Parameshwar AB, Dayanand A (2020a) The occurrence of potential and novel isolates of Oceanobacillus sp. JAS12 and Salinicoccus sp. JS20 recovered from West Coast of Arabian Sea, India. Res J Biotechnol 15(9):133–140

    CAS  Google Scholar 

  • Yaradoddi JS, Banapurmath NR, Ganachari SV, Soudagar MEM, Mubarak NM, Hallad S, Hugar S, Fayaz H (2020b) Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Sci Rep 10:21960. https://doi.org/10.1038/s41598-020-78912-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsimth C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowictsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merja H. Kontro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kontro, M.H., Yaradoddi, J.S. (2021). Microbial Ecology. In: Yaradoddi, J.S., Kontro, M.H., Ganachari, S.V. (eds) Actinobacteria. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3353-9_1

Download citation

Publish with us

Policies and ethics