Skip to main content

Aquaculture Productivity Enhancement Through Advanced Technologies

  • Chapter
  • First Online:
Advances in Fisheries Biotechnology

Abstract

To cope with the growing demand of protein requirement for the world population, aquaculture should be given more attention as the growth of capture fisheries from both sea and freshwater has stagnated in the last few decades. Looking at the data collected by the FAO, it is now clear that aquaculture productivity has surpassed the capture fisheries substantially. Such development has been possible due to factors such as advancement in stock improvement, better health care, optimal food and feed development and better water quality management for species used in commercial aquaculture. Though advancement in all these areas has collectively enhanced the productivity, the increased population pressure has forced the aquaculturists to look for methods to enhance productivity further. Several technologies are now available which may be used to fulfil the requirements of increasing productivity. Transgenic (both auto-transgenic and allo-transgenic) technology has been available for several fish species from the early 1980s, where it has shown that higher growth rate, better health care and tolerance to environmental stress can be modulated for ensuring higher productivity. Problem in implementation of these technologies was the regulatory stumbling block which took more than 20 years to resolve (the first approval was received in 2019). The use of gene editing techniques, especially CRISPR, though developed recently, is increasing at a very rapid pace in many areas of aquaculture that may enhance productivity. The regulatory authorities have taken a proactive decision (at least in one case concerning a Tilapia species altered for higher growth rate) where alteration/deletion of a few bases is not considered as a new genetically modified organism and therefore, could be cultivated at commercial scale without regulatory approvals. Micro RNA technology is also developing at a very fast pace as an advance technique of DNA sequencing and computation in fish species to test and assign the role of new miRNAs. In this chapter, all the aforementioned techniques are described briefly with a few relevant examples of their usage with respect to productivity enhancement of aquaculture species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amsterdam AS, Lin S, Hopkins N (1995) The Aequorea victoria green fluorescent protein can be used as a reporter in live zebra fish embryos. Dev Biol 171:123–129

    Article  CAS  PubMed  Google Scholar 

  • Andreassen R, Hoyheim B (2017) miRNA associated with immune response in teleost fish. Dev Comp Immunol 75:77–85

    Article  CAS  PubMed  Google Scholar 

  • Bambino K, Chu J (2017) Zebra fish in toxicology and environmental health. Curr Top Dev Biol 124:331–367. https://doi.org/10.1016/bs.ctdb.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941. https://doi.org/10.1038/nbt.3659

    Article  CAS  PubMed  Google Scholar 

  • Beardmore JA (1997) Transgenics: autotransgenics and allotransgenics. Transgenic Res 6:107–108

    Article  CAS  Google Scholar 

  • Beardmore JA, Porter JS (2003) Genetically modified organisms and aquaculture. In: FAO fisheries circular No. 989. FAO, Rome. 38 p

    Google Scholar 

  • Bizuayehu TT, Babiak I (2014) MicroRNA in teleost fish. Genome Biol Evol 6:1911–1937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V (2019) How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. JIFCC 30:114–127

    CAS  Google Scholar 

  • Buono RJ, Linser PJ (1992) Transient expression of RSVCAT in transgenic zebrafish made by electroporation. Mol Mar Biol Biotechnol 1:271–275. PMID: 1339227

    CAS  PubMed  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucl Acids 8:132–143

    Article  CAS  Google Scholar 

  • Chen TT, Lu JK, Shamblott MJ, Chench CM, Lin CM, Burns JC, Reimschuessel R, Chatakondi N, Dunham RA (1995) Transgenic fish: ideal models for basic research and biotechnological applications. Zool Stud 34:215–234

    CAS  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Liu Y, Wang W, Wang Q, Zhang N, Lin F, Wang N, Shao C, Dong Z, Li Y, Yang Y, Hu M, Li H, Gao F, Wei Z, Meng L, Liu Y, Wei M, Zhu Y, Guo H, Cheng CHK, Schartl M, Chen S (2017) Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci Rep 7:42213. https://doi.org/10.1038/srep42213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin RH, Raven PA, Sundstrdnt LF, Uh M (2009) Issues and methodology for development of transgenic fish for aquaculture with a focus on growth enhancement. In: Overturf K (ed) Molecular research in aquaculture. Wiley-Blackwell, London, pp 217–260

    Chapter  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346:1258096

    Article  PubMed  CAS  Google Scholar 

  • Dunham RA, Eash J, Askins J, Townes TM (1987) Transfer of the metallothionein–human growth hormone fusion gene into channel catfish. Trans Am Fish Soc 116:87–91

    Article  CAS  Google Scholar 

  • Dunham RA, Ramboux AC, Duncan PL, Hayat M, Chen TT, Lin CM, Kight K, Gonzalez-Villasenor I, Powers DA (1992) Transfer, expression, and inheritance of salmonid growth hormone genes in channel catfish, Ictalurus punctatus, and effects on performance traits. Mol Mar Biol Biotechnol 1:380–389

    CAS  PubMed  Google Scholar 

  • Dunham RA, Warr G, Nichols A, Duncan PL, Argue B, Middleton D, Liu Z (2002) Enhanced bacterial disease resistance of transgenic channel catfish, Ictalurus punctatus, possessing cecropin genes. Mar Biotechnol 4:338–344

    Article  CAS  Google Scholar 

  • Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A (2014) Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS One 9:e108622. https://doi.org/10.1371/journal.pone.0108622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Chen T, Pan Q, Wang Q (2018) Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J Expt Zool B Mol Dev Evol 330:242–246

    Article  CAS  Google Scholar 

  • FAO (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in action. FAO, Rome. https://doi.org/10.4060/ca9229en

    Book  Google Scholar 

  • Fenske M, Segner H (2004) Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquat Toxicol 67:105–126

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantz VM, Bier E (2015) The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348:442–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantz VM, Jasinskieneb N, Tatarenkovab O, Fazekasb A, Maciasb VM, Biera E, Jamesb AA (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A 112:E6736–E6743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Dai Z, Shi C, Zhai G, Jin X, He J, Lou Q, Yin Z (2016) Depletion of myostatin b promotes somatic growth and lipid metabolism in zebrafish. Front Endocrinol 7:88., 1–10. https://doi.org/10.3389/fendo.2016.00088

    Article  Google Scholar 

  • Gay S, Bugeon J, Bouchareb A, Henry L, Delahaye C, Legeai F, Montfort J, Le Cam A, Siegel A, Bobe J, Thermes V (2018) MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet 14:e1007593. https://doi.org/10.1371/journal.pgen.1007593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratacap RL, Wargelius A, Edvardson RB, Houston RD (2019) Potential of genome editing to improve aquaculture breeding and production. Trends Genet 35:672–684

    Article  CAS  PubMed  Google Scholar 

  • Gratacap RL, Regan T, Dehler CE, Martin SAM, Boudinot P, Collet B, Ross D, Houston RD (2020) Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. BMC Biotechnol 20:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunwald HA, Gantz VM, Poplawski G, Xu X-r S, Bier E, Cooper KL (2019) Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline. Nature 566:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber JE (2000) Lucky breaks: analysis of recombination in Saccharomyces. Mutat Res 451:53–69

    Article  CAS  PubMed  Google Scholar 

  • He P, Wei P, Zhang B, Zhao Y, Li Q, Chen X, Zeng D, Peng M, Yang C, Peng J, Chen X (2018) Identification of microRNAs involved in cold adaptation of Litopenaeus vannamei by high-throughput sequencing. Gene 677:24–31

    Article  CAS  PubMed  Google Scholar 

  • Herkenhoff ME, Oliveira AC, Nachtigall PG, Costa JM, Campos VF, Hilsdorf AWS, Pinhal D (2018) Fishing into the microRNA transcriptome. Front Genet 9:1–15

    Article  CAS  Google Scholar 

  • Hwang G, Müller F, Rahman MA, Williams DW, Murdock PJ, Pasi KJ, Goldspink G, Farahmand H, Maclean N (2004) Fish as bioreactors: transgene expression of human coagulation factor VII in fish embryos. Mar Biotechnol 6:485–492. https://doi.org/10.1007/s10126-004-3121-2

    Article  CAS  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jao L-E, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 34:13904–13909

    Article  Google Scholar 

  • Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaynes JM, Julian GR, Jeffers GW, White KL, Enright FM (1989) In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines. Pept Res 2:157–160

    CAS  PubMed  Google Scholar 

  • Ji X, Jiang P, Luo J, Li M, Bai Y, Zhang J, Han B (2020) Identification and characterization of miRNAs involved in cold acclimation of zebra fish ZF4 cells. PLoS One 15:e0226905. https://doi.org/10.1371/journal.pone.0226905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju B, Xu Y, He J, Liao J, Yan T, Hew CL, Lam TJ, Gong Z (1999) Faithful expression of green fluorescent protein (GFP) in transgenic zebra fish embryos under control of zebra fish gene promoters. Dev Genet 25:158–167. https://doi.org/10.1002/(SICI)1520-6408(1999)25:2<158::AID-DVG10>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Robinson D, Dunham R (2017) Generation of Myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 System. Sci Rep 7:7301. https://doi.org/10.1038/s41598-017-07223-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    Article  CAS  PubMed  Google Scholar 

  • Kjuul AK, Bullesbach EE, Espelid S, Dunham RA, Jorgensen TO, Warr GW, Styrvold OB (1999) Effects of cecropin peptides on bacteria pathogenic to fish. J Fish Dis 22:387–394

    Article  CAS  Google Scholar 

  • Lander ES (2016) The heroes of CRISPR. Cell 164:18–28

    Article  CAS  PubMed  Google Scholar 

  • Lau ES-W, Zhang Z, Qin M, Ge W (2016) Knockout of zebra fish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Sci Rep 6:37357. https://doi.org/10.1038/srep37357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-J (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20:61–86

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee H-C, Lu P-N, Huang H-L, Chu C, Li H-P, Tsai H-J (2014) Zebrafish transgenic line huORFZ is an effective living bioindicator for detecting environmental toxicants. PLoS One 9:e90160. https://doi.org/10.1371/journal.pone.0090160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee O, Green JM, Tyler CR (2015) Transgenic fish systems and their application in ecotoxicology. Crit Rev Toxicol 45:124–141. PubMed: 25394772

    Article  CAS  PubMed  Google Scholar 

  • Li MH, Yang HH, Li MR, Sun YL, Jiang XL, Xie Q-P, Wang T-R, Shi H-J, Sun L-N, Zhou L-Y, Wang D-S (2013) Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology 154:4814–4825

    Article  CAS  PubMed  Google Scholar 

  • Li M, Yang H, Zhao J, Fang L, Shi H, Li M, Sun Y, Zhang X, Jiang D, Zhou L, Wang D (2014) Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197:591–599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540

    Article  CAS  PubMed  Google Scholar 

  • Lindow M, Kauppinen S (2012) Discovering the first microRNA-targeted drug. J Cell Biol 199:407–412. https://doi.org/10.1083/jcb.201208082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Qi Y, Liang Q, Song Q, Liu J, Li W, Shu Y, Tau M, Zhang C, Qin Q, Wang J, Liu S (2019) Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci China Life Sci 62:1194–1202. https://doi.org/10.1007/s11427-018-9404-7

    Article  CAS  PubMed  Google Scholar 

  • Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2015) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu JK, Chen TT, Chrisman CL, Andrisani OM, Dixon JE (1992) Integration, expression and germ-line transmission of foreign growth hormone genes in medaka (Oryzias latipes). Mol Mar Biol Biotechnol 1:366–375. PMID: 1285009

    CAS  PubMed  Google Scholar 

  • Majumdar KC, Nasaruddin K, Ravinder K (1997) Pink body colour in Tilapia shows single gene inheritance. Aquac Res 28:581–589

    Article  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherron AC, Lee S-J (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94:12457–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherron AC, Lawler AM, Lee S-J (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  • Müller F, Ivics Z, Erdélyi F, Papp T, Váradi L, Horváth L, Maclean N, Orbán L (1992) Introducing foreign genes into fish eggs with electroporated sperm as a carrier. Mol Mar Biol Biotechnol 1:276–281

    PubMed  Google Scholar 

  • Nam YK, Maclean N, Hwang G, Kim DS (2008) Autotransgenic and allotransgenic manipulation of growth traits in fish for aquaculture: a review. J Fish Biol 72:1–26

    Article  CAS  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozato K, Kondoh H, Inohara H, Iwamatsu T, Wakamatsu Y, Okada TS (1986) Production of transgenic fish: introduction and expression of chickenδ-crystallin gene in medaka embryos. Cell Differ Dev 19:237–244

    Article  CAS  Google Scholar 

  • Powers DA, Cole T, Creech K, Chen TT, Lin CM, Kight K, Dunham R (1992) Electroporation: a method for transferring genes into the gametes of zebrafish, Brachydanio rerio, channel catfish, Ictalurus punctatus, and common carp, Cyprinus carpio. Mol Mar Biol Biotechnol 1:301–309

    CAS  PubMed  Google Scholar 

  • Proudfoot C, McFarlane G, Whitelaw B, Lillico S (2020) Livestock breeding for the 21st century: the promise of the editing revolution. Front Agric Sci Eng 7:129–135

    Article  Google Scholar 

  • Rajesh R, Majumdar KC (2005) Transgene integration- an analysis in Auto transgenic Labeo rohita Hamilton (Pisces: Cyprinidae). Fish Physiol Biochem 31:281–287

    Article  CAS  PubMed  Google Scholar 

  • Rasal KD, Nandanpawar PC, Swain P, Badhe MR, Sundaray JK, Jayasankar P (2016) MicroRNA in aquaculture fishes: a way forward with high-throughput sequencing and a computational approach. Rev Fish Biol Fish 26:199–212. https://doi.org/10.1007/s11160-016-9421-6

    Article  Google Scholar 

  • Sarmasik A, Warr G, Chen TT (2002) Production of transgenic medaka with increased resistance to bacterial pathogens. Mar Biotechnol 4:310–322

    Article  CAS  Google Scholar 

  • Schier AF, Giraldez AJ (2016) MicroRNA function and mechanism: insights from zebra fish. Cold Spring Harb Symp Quant Biol 71:195–203

    Article  Google Scholar 

  • Smith K (2019) Time to start intervening in the human germline? A utilitarian perspective. Bioethics 34:90–104. https://doi.org/10.1111/bioe.12691

    Article  PubMed  Google Scholar 

  • Steiner H, Hultmark D, Engstrom A, Bennick H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in antibacterial immunity. Nature 292:246–248

    Article  CAS  PubMed  Google Scholar 

  • Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebra fish embryos. Development 103:403–412

    Article  CAS  PubMed  Google Scholar 

  • Sui C, Chena J, Ma J, Zhaoa W, Canárioa AVM, Martinsd RST (2019) Somatostatin 4 regulates growth and modulates gametogenesis in zebrafish. Aquac Fisher 4:239–246. https://doi.org/10.1016/j.aaf.2019.05.002

    Article  Google Scholar 

  • Symonds JE, Walker SP, Sin FYT (1994) Electroporation of salmon sperm with plasmid DNA: evidence of enhanced sperm/DNA association. Aquaculture 119:313–327

    Article  CAS  Google Scholar 

  • Takatsu K, Miyaoku K, Roy SR, Murono Y, Sago T, Itagaki H, Nakamura M, Tokumoto T (2013) Induction of female-to-male sex change in adult zebrafish by aromatase inhibitor treatment. Sci Rep 3:3400

    Article  PubMed  PubMed Central  Google Scholar 

  • Tester M (1999) Seeking clarity in the debate over the safety of GM foods. Nature 402:575

    Article  CAS  PubMed  Google Scholar 

  • Thrasher A, Baltimore D, Pei D, Lander ES, Winnacker E-L, Baylis F, Daley GQ, Doudna JA, Berg P, Ossorio P, Zhou Q, Lovell-Badge R (2016) On human gene editing: international summit statement by the organizing committee. Issue Sci Technol 32(3)

    Google Scholar 

  • Tonelli FMP, Lacerda SMSN, Tonelli FCP, Costa GMJ, França LR, Resende RR (2017) Progress and biotechnological prospects in fish transgenesis. Biotechnol Adv 35:832–844

    Article  CAS  PubMed  Google Scholar 

  • Tsai HJ, Tseng TS, Liao IC (1995a) Electroporation of sperm to introduce foreign DNA into the genome of loach (Misgurnus anguillicaudatus). Can J Fish Aquat Sci 52:776–787

    Article  CAS  Google Scholar 

  • Tsai HJ, Wang SH, Inoue K, Takagi S, Kimura M, Wakamatsu Y, Ozato K (1995b) Initiation of the transgenic lacZ gene expression in medaka (Oryzias latipes) embryos. Mol Mar Biol Biotechnol 4:1–9

    CAS  PubMed  Google Scholar 

  • Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta Mol Cell Res 1803:1231–1243

    Article  CAS  Google Scholar 

  • Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2017) First genetically engineered salmon sold in Canada. Nature 548:148

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Chen Y-L, Bian W-P, Xie S-L, Qi G-L, Liu L, Strauss PR, Zou J-X, Pei D-S (2018) Deletion of mstna and mstnb impairs the immune system and affects growth performance in Zebra fish. Fish Shellfish Immunol 72:572–580

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Liu B, Zhu C-D, Li K-L, Yue L-J, Zhao J-L, Gong X-L, Wang C-H (2013a) microRNA regulation of skin pigmentation in fish. J Cell Sci 126:3401–3408. https://doi.org/10.1242/jcs.125831

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Guo J-T, Zhu C-D, Zhao L-H, Zhao J-L (2013b) miR-203b: a novel regulator of MyoD expression in tilapia skeletal muscle. J Exp Biol 216:447–451. https://doi.org/10.1242/jeb.076315

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Li H, Li Q, Xu R, Yue C, Du S (2019) Targeted gene disruption in Pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes. Mar Biotechnol 21:301–309. https://doi.org/10.1007/s10126-019-09885-y

    Article  CAS  Google Scholar 

  • Zhang PJ, Hayat M, Joyce C, Gonzalez VL, Lin CM, Dunham RA, Chen TT, Powers DA (1990) Gene transfer, expression and inheritance of pRSV-rainbow trout-GH cDNA in the common carp, Cyprinus carpio (Linnaeus). Mol Reprod Dev 25:3–13

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang S, Lu H, Zhang L, Zhang W (2014) Genes encoding aromatases in teleosts: evolution and expression regulation. Gen Comp Endocrinol 205:151–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Song F, Sun Y, Yu K, Xiang J (2018) CRISPR/Cas9-mediated deletion of EcMIH shortens metamorphosis time from mysis larva to postlarva of Exopalaemon carinicauda. Fish Shellfish Immunol 77:244–251

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Yu X, Jia J, Yang G, Sun C, Li W (2019) miR-181b-5p may regulate muscle growth in Tilapia by targeting Myostatin b. Front Endocrinol 10:812. https://doi.org/10.3389/fendo.2019.00812

    Article  Google Scholar 

  • Zhong Z, Niu P, Wang M, Huang G, Xu S, Sun Y, Xu X, Hou Y, Sun X, Yan Y, Wang H (2016) Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep 6(22953):2016. https://doi.org/10.1038/srep22953

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are indebted to Dr Uma Devi Komath for correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumdar, K.C., Ramachandran, R. (2021). Aquaculture Productivity Enhancement Through Advanced Technologies. In: Pandey, P.K., Parhi, J. (eds) Advances in Fisheries Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3215-0_1

Download citation

Publish with us

Policies and ethics