Skip to main content

Cancer Microbiome and Immunotherapy: Understanding the Complex Responses Between Microbes, Immunity, and Cancer

  • Chapter
  • First Online:
Microbiome in Human Health and Disease

Abstract

The microbiome is the inherited substance of the numerous microscopic organisms that exist on and within the human body, including bacteria, protozoa, fungi, and viruses. The human gut microbiota is dominatingly made out of four groups of microbial phyla: Firmicutes, Bacteroides, Actinobacteria, and Proteobacteria; this entire microbiome assumes a significant job to the improvement of immunity. However, disruption of this homeostatic host–microorganism relationship can promote disease pathogenesis, such as in autoimmune diseases and cancer. Current investigations additionally show with the intention of the gut microbiome might influence the reaction to cancer treatment, by balancing the host cell inflammatory reaction. As the investigation of the microbiome is growing, various endeavors are being prepared to incline the range on the “ideal” microbiome region. In this regard, this chapter extensively discusses various types of cancers and the role of the microbiome in their treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander JL, Wilson ID et al (2017) Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 14(6):356–365

    Article  CAS  PubMed  Google Scholar 

  • Arpaia N, Campbell C et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aviles-Jimenez F, Vazquez-Jimenez F et al (2014) Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep 4:4202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Backhed F, Manchester JK et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104(3):979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu JF (2020) Colorectal Cancer research: basic, preclinical, and clinical approaches. Cancers 12(2):416

    Article  PubMed Central  Google Scholar 

  • Bouskra D, Brezillon C et al (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510

    Article  CAS  PubMed  Google Scholar 

  • Bray F, Ferlay J et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Bullman S, Pedamallu CS et al (2017) Analysis of fusobacterium persistence and antibiotic response in colorectal cancer. Science 358(6369):1443–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bultman SJ (2014) Emerging roles of the microbiome in cancer. Carcinogenesis 35(2):249–255

    Article  CAS  PubMed  Google Scholar 

  • Burgess SL, Buonomo E et al (2014) Bone marrow dendritic cells from mice with an altered microbiota provide interleukin 17A-dependent protection against Entamoeba histolytica colitis. mBio 5(6):e01817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camilo V, Sugiyama T, Touati E (2017) Pathogenesis of helicobacter pylori infection. Helicobacter 22(Suppl 1):e12405

    Article  CAS  Google Scholar 

  • Cogdill AP, Gaudreau PO et al (2018) The impact of Intratumoral and gastrointestinal microbiota on systemic Cancer therapy. Trends Immunol 39(11):900–920

    Article  CAS  PubMed  Google Scholar 

  • Curtis MM, Hu Z et al (2014) The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 16(6):759–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Martel C, Ferlay J et al (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13(6):607–615

    Article  PubMed  Google Scholar 

  • Deriu E, Liu JZ et al (2013) Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14(1):26–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Bello MG, Godoy-Vitorino F et al (2019) Role of the microbiome in human development. Gut 68(6):1108–1114

    Article  CAS  PubMed  Google Scholar 

  • Frank DN, Amand ALS et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104(34):13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda S, Toh H et al (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331):543–547

    Article  CAS  PubMed  Google Scholar 

  • Geva-Zatorsky N, Sefik E et al (2017) Mining the human gut microbiota for immunomodulatory organisms. Cell 168(5):928–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiringhelli F, Menard C et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56(5):641–648

    Article  CAS  PubMed  Google Scholar 

  • Gielda LM, Dirita VJ (2012) Zinc competition among the intestinal microbiota. mBio 3(4):e00171–e00112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert JJ, Jones G et al (2015) Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst 107(8):djv147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorjifard S, Goldszmid RS (2016) Microbiota-myeloid cell crosstalk beyond the gut. J Leukoc Biol 100(5):865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herp S, Brugiroux S et al (2019) Mucispirillum schaedleri antagonizes Salmonella virulence to protect mice against colitis. Cell Host Microbe 25(5):681–694

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Wong MH et al (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291(5505):881–884

    Article  CAS  PubMed  Google Scholar 

  • Iida N, Dzutsev A et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson HE, Jernberg C et al (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5(3):e9836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jenq RR, Ubeda C et al (2012) Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 209(5):903–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson ME, Jakobsson HE et al (2015) Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18(5):582–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Jobin C et al (2014) Chemotherapy, immunity and microbiota--a new triumvirate? Nat Med 20(2):126–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lecuyer E, Rakotobe S et al (2014) Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40(4):608–620

    Article  CAS  PubMed  Google Scholar 

  • Lepage P, Leclerc MC et al (2013) A metagenomic insight into our gut's microbiome. Gut 62(1):146–158

    Article  PubMed  Google Scholar 

  • Litvak Y, Mon KKZ et al (2019) Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition. Cell Host Microbe 25(1):128–139

    Article  CAS  PubMed  Google Scholar 

  • Luo GG, Ou JH (2015) Oncogenic viruses and cancer. Virol Sin 30(2):83–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Lupp C, Skipper M et al (2012) Gut microbes and health. Nature 489(7415):219

    Article  CAS  PubMed  Google Scholar 

  • Martins HM, Almeida I et al (2008) Interaction of wild strains of aspergilla with Aspergillus parasiticus ATCC15517 and aflatoxin production. Int J Mol Sci 9(3):394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathewson ND, Jenq R et al (2016) Corrigendum: gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 17(10):1235

    Article  CAS  PubMed  Google Scholar 

  • McFall-Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254(5037):1491–1494

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi K, Nosho K et al (2015) Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 6(9):7209–7220

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan XC, Huttenhower C (2012) Chapter 12: human microbiome analysis. PLoS Comput Biol 8(12):e1002808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabst O (2012) New concepts in the generation and functions of IgA. Nat Rev Immunol 12(12):821–832

    Article  CAS  PubMed  Google Scholar 

  • Paulos CM, Wrzesinski C et al (2007) Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 117(8):2197–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopala SV, Yooseph S et al (2016) Gastrointestinal microbial populations can distinguish pediatric and adolescent acute lymphoblastic leukemia (ALL) at the time of disease diagnosis. BMC Genomics 17(1):635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramirez-Garcia A, Gallot N et al (2011) Molecular fractionation and characterization of a Candida albicans fraction that increases tumor cell adhesion to hepatic endothelium. Appl Microbiol Biotechnol 92(1):133–145

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Jiang J et al (2017) Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget 8(56):95176–95191

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosshart SP, Vassallo BG et al (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171(5):1015–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routy B, Gopalakrishnan V et al (2018) The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol 15(6):382–396

    Article  CAS  PubMed  Google Scholar 

  • Schirmer M, Smeekens SP et al (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167(7):1897

    Article  CAS  PubMed  Google Scholar 

  • Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13(11):800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sender R, Fuchs S et al (2016) Revised estimates for the number of human and Bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith K, McCoy KD et al (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19(2):59–69

    Article  CAS  PubMed  Google Scholar 

  • Spiljar M, Merkler D et al (2017) The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front Immunol 8:1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tai E, Richardson LC et al (2011) Clostridium difficile infection among children with cancer. Pediatr Infect Dis J 30(7):610–612

    Article  PubMed  Google Scholar 

  • Tan J, McKenzie C et al (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119

    Article  CAS  PubMed  Google Scholar 

  • Ter Horst R, Jaeger M et al (2016) Host and environmental factors influencing individual human cytokine responses. Cell 167(4):1111–1124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas H (2017) Pancreatic cancer: Intra-tumour bacteria promote gemcitabine resistance in pancreatic adenocarcinoma. Nat Rev Gastroenterol Hepatol 14(11):632

    Article  PubMed  Google Scholar 

  • Tomasello G, Mazzola M et al (2016) Nutrition, oxidative stress and intestinal dysbiosis: influence of diet on gut microbiota in inflammatory bowel diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 160(4):461–466

    Article  PubMed  Google Scholar 

  • Urbaniak C, Gloor GB et al (2016) The microbiota of breast tissue and its association with breast Cancer. Appl Environ Microbiol 82(16):5039–5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe-Herranz M, Bittinger K et al (2018) Gut microbiota modulates adoptive cell therapy via CD8alpha dendritic cells and IL-12. JCI Insight 3(4):e94952

    Article  PubMed Central  Google Scholar 

  • Vetizou M, Pitt JM et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viaud S, Saccheri F et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342(6161):971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xue J et al (2014) Oral microbiota distinguishes acute lymphoblastic leukemia pediatric hosts from healthy populations. PLoS One 9(7):e102116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu S, Yin W et al (2020) Foes or friends? Bacteria enriched in the tumor microenvironment of colorectal Cancer. Cancers 12(2):372

    Article  CAS  PubMed Central  Google Scholar 

  • Yi M, Jiao D et al (2018) Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 17(1):129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zambirinis CP, Pushalkar S et al (2014) Pancreatic cancer, inflammation, and microbiome. Cancer J 20(3):195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitvogel L, Daillere R et al (2017) Anticancer effects of the microbiome and its products. Nat Rev Microbiol 15(8):465–478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their respective academic institutions for the support extended.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Godisela, K.K., Kiran, B.S.S., Bramhachari, P.V. (2021). Cancer Microbiome and Immunotherapy: Understanding the Complex Responses Between Microbes, Immunity, and Cancer. In: Bramhachari, P.V. (eds) Microbiome in Human Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-16-3156-6_6

Download citation

Publish with us

Policies and ethics