Skip to main content

Estimation of Blue Carbon Stock of Mangrove Ecosystem and Its Dynamics in Relation to Hydrogeomorphic Settings and Land Use-land Cover

  • Chapter
  • First Online:
Mangroves: Ecology, Biodiversity and Management

Abstract

This chapter reviews blue carbon stock of different mangrove ecosystems across globe through published literature. It also tries to evaluate its dynamics with different land use and land cover changes. The study reveals that mangroves have a high potential to store carbon compared to other terrestrial and coastal ecosystems. Indian Sundarbans stores 160–360 tC/ha based on salinity and vegetation types. The emission of carbon from the degradation of above-ground biomass in Indian Sundarbans was 427,242 tons between 1975 and 2013. Deforestation of Bangladesh Sundarbans causes loss of 8500, 1800, 670, 290, 133, and 104 hectares of mangroves along Chakaria, Naf river estuary and offshore Island, Naf river, Maiskhali Island, Jaliardwip Island, and Matabar Island, respectively. There is a rapid decline in plantations (-58.2%), mangrove swamps (-49.3%), and mangrove forests (-21.3%) during 2000–2017 due to their conversion to aquaculture farms in Bangladesh. Along Indian coastlines, Andhra Pradesh is the most affected area and shows significant decrease in paddy fields due to their conversion to aquaculture farms between 1980–81 and 2000–01. It also indicates massive increase in shrimp production from 1990-2017. Bangladesh shows a dramatic rise in shrimp production from 56,569 to 75,274 tons from 2010-2011 to 2014-2015. Destruction of mangroves releases carbon dioxide in the atmosphere and can reverse mangroves’ role from a sink to source. Since aquaculture farming helps in high revenue generation but negatively affects the coastal ecosystem, it is essential to maintain a balance. Hence Integrated Multi-Trophic Aquaculture (IMTA) has been introduced along with mangrove forest restoration, and REDD+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adame MF, Kauffman JB, Medina I, Gamboa JN, Torres O, Caamal JP, Reza M, Herrera-Silveira JA (2013) Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PloS one 8(2): p.e56569.

    Google Scholar 

  • Ahmed N, Glaser M (2016) Coastal aquaculture, mangrove deforestation and blue carbon emissions: is REDD+ a solution?. Mar Policy 66:58-66.

    Article  Google Scholar 

  • Ahmed N, Cheung WW, Thompson S, Glaser M (2017) Solutions to blue carbon emissions: Shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar Policy 82:68-75.

    Article  Google Scholar 

  • Ahmed N, Occhipinti-Ambrogi A, Muir JF (2013) The impact of climate change on prawn postlarvae fishing in coastal Bangladesh: socioeconomic and ecological perspectives. Mar Policy 39:224-233.

    Article  Google Scholar 

  • Akhand A, Mukhopadhyay A, Chanda A, Mukherjee S, Das A, Das S, Hazra S, Mitra D, Choudhury SB, Rao KH (2017) Potential CO2 emission due to loss of above ground biomass from the Indian Sundarban mangroves during the last four decades. J Indian Soc Remote Sens 45(1):147-154.

    Article  Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29(3):331-349.

    Article  Google Scholar 

  • Alongi DM, Mukhopadhyay SK (2015) Contribution of mangroves to coastal carbon cycling in low latitude seas. Agric For Meteorol 213:266-272.

    Article  Google Scholar 

  • Alongi DM (2018) Mangrove forests. In Blue Carbon (pp. 23-36). Springer, Cham.

    Google Scholar 

  • Anderson K, Starkey R, Bows A (2009) Defining dangerous climate change - a call for consistency. Policy 14(2):103-110.

    Google Scholar 

  • Banerjee K, Roy Chowdhury M, Sengupta K, Sett S, Mitra A (2012) Influence of anthropogenic and natural factors on the mangrove soil of Indian Sundarbans wetland. Arch Environ Sci 6:80-91.

    Google Scholar 

  • Banerjee K, Sahoo CK, Bal G, Mallik K, Paul R, Mitra A (2020) High blue carbon stock in mangrove forests of Eastern India. Trop Ecol 61:150-167.

    Article  CAS  Google Scholar 

  • Beymer-Farris BA, Bassett TJ (2012) The REDD menace: Resurgent protectionism in Tanzania’s mangrove forests. Glob Environ Change 22(2):332-341.

    Article  Google Scholar 

  • Bhomia RK, MacKenzie RA, Murdiyarso D, Sasmito SD, Purbopuspito J (2016) Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecol Appl 26(5):1396-1408.

    Article  CAS  PubMed  Google Scholar 

  • Biswas SR, Mallik AU, Choudhury JK, Nishat A (2009) A unified framework for the restoration of Southeast Asian mangroves - bridging ecology, society and economics. Wet Ecol Manage17(4):365-383.

    Google Scholar 

  • Bosma R, Sidik AS, van Zwieten P, Aditya A, Visser L (2012) Challenges of a transition to a sustainably managed shrimp culture agro-ecosystem in the Mahakam delta, East Kalimantan, Indonesia. Wet Ecol Manag 20(2):89-99.

    Article  Google Scholar 

  • Bosire JO, Bandeira S, Rafael J (2012) Coastal climate change mitigation and adaptation through REDD+ carbon programs in mangroves in Mozambique: Pilot in the Zambezi Delta. Determination of carbon stocks through localized allometric equations component, WWF.

    Google Scholar 

  • Bournazel J, Kumara, MP, Jayatissa LP, Viergever K, Morel V Huxham M (2015) The impacts of shrimp farming on land-use and carbon storage around Puttalam lagoon, Sri Lanka. Ocean Coast Manage 113:18-28.

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26(4):889-916.

    Article  Google Scholar 

  • Briggs M, Funge-Smith S, Subasinghe R, Phillips M. Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. RAP publication, 10(2004):92.

    Google Scholar 

  • Cameron C, Hutley LB, Friess DA, Brown B (2019) High greenhouse gas emissions mitigation benefits from mangrove rehabilitation in Sulawesi, Indonesia. Eco Ser 40:101035.

    Google Scholar 

  • Chanda A, Mukhopadhyay A, Ghosh T, Akhand A, Mondal P, Ghosh S, Mukherjee S, Wolf J, Lázár AN, Rahman MM, Salehin M (2016) Blue carbon stock of the Bangladesh Sundarban mangroves: what could be the scenario after a century?. Wetlands 36(6):1033-1045.

    Article  Google Scholar 

  • Chopin T, Troell M, Reid GK, Knowler D, Robinson SMC, Neori A, Buschmann AH, Pang SJ, Fang J (2010) Integrated multi-trophic aquaculture (IMTA)-A responsible practice providing diversified seafood products while rendering biomitigating services through its extractive components. Abstracts. Aquaculture Europe.

    Google Scholar 

  • Chopin T, Cooper JA, Reid G, Cross S, Moore, C (2012) Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev Aquac 4(4):209-220.

    Article  Google Scholar 

  • CIBA (2009) Training manual on Better management practices in shrimp farming. CIBA Special Publications No.44. Madras, India, p. 133.

    Google Scholar 

  • Chowdhury SR, Hossain MS, Sharifuzzaman SM, Sarker S (2015) Blue carbon in the coastal ecosystems of Bangladesh. Project Document, Support to Bangladesh on Climate Change Negotiation and Knowledge Management on Various Streams of UNFCCC Process Project, funded by DFID and Danida, implemented by IUCN Bangladesh Country Office.

    Google Scholar 

  • Chung IK, Oak JH, Lee JA, Shin JA, Kim JG, Park KS (2013) Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean Project Overview. ICES J Mar Sci 70(5):1038-1044.

    Article  Google Scholar 

  • Clements JC, Chopin T (2017) Ocean acidification and marine aquaculture in North America: potential impacts and mitigation strategies. Rev Aqu 9(4):326-341.

    Article  Google Scholar 

  • Coastal Resource Institute (CORIN) (1995) The effect of aquaculture on agricultural land and coastal environment. Mimeo, Prince of Songkla University, Songkhla, Thailand.

    Google Scholar 

  • Detwiler RP, Hall CAS (1988) Tropical forests and the global carbon cycle. Science 239:42–47.

    Article  CAS  PubMed  Google Scholar 

  • Devi B, Bhardwaj DR, Panwar P, Pal S, Gupta NK, Thakur CL (2012) Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India. Ann Forest Res 56(1):123–135.

    Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293-297.

    Article  CAS  Google Scholar 

  • Donato DC, Kauffman JB, Mackenzie RA, Ainsworth A, Pfleeger AZ (2012) Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. J Environ Manage 97:89–96.

    Article  CAS  PubMed  Google Scholar 

  • Dorababu KK (2013) Impact of aquaculture on land use patterns, environment and economy: A case study of west Godavari district, Andhra Pradesh, India. Int J Curr Res 5(7):1993–1996

    Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2004) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  Google Scholar 

  • Duarte CM, Dennison WC, Orth RJ, Carruthers TJ (2008) The charisma of coastal ecosystems: addressing the imbalance. Estuar Coast 31(2):233-238.

    Article  Google Scholar 

  • Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N (2007) A world without mangroves?. Science 317(5834):41–42.

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Das PK, Paul S, Sharma JR Dhadwal VK (2014) Spatio-temporal assessment of ecological disturbance and its intensity in the mangrove forest using MODIS derived disturbance index. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 8:555–559.

    Article  Google Scholar 

  • Eong OJ (1993) Mangroves-a carbon source and sink. Chemosphere 27(6):1097–1107.

    Article  Google Scholar 

  • Estrada GC, Soares ML (2017) Global patterns of aboveground carbon stock and sequestration in mangroves. An Acad Bras Ciênc 89(2):973–989.

    Article  CAS  PubMed  Google Scholar 

  • FAO, The State of World Fisheries and Aquaculture (2016) Contributing to Food Security and Nutrition for All, Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • FAO, Food and Agriculture Organization (FAO) of the United Nations (2007) The World’s Mangroves 1980–2005. FAO, Rome.

    Google Scholar 

  • FRSS, Fisheries Statistical Report of Bangladesh, Fisheries Resources Survey System, Department of Fisheries, Bangladesh, 2016.

    Google Scholar 

  • Ghosh A, Schmidt S, Fickert T, Nüsser M (2015) The Indian Sundarban mangrove forests: history, utilization, conservation strategies and local perception. Diversity 7(2):149-169.

    Article  CAS  Google Scholar 

  • Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA (2008) Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J Biogeograph 35(3):519–528.

    Article  Google Scholar 

  • Granek E, Ruttenberg BI (2008) Changes in biotic and abiotic processes following mangrove clearing. Estuar Coast Mar Sci 80(4):555-562.

    Article  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta-analysis. Glob Change Biol 8(4):345-360.

    Article  Google Scholar 

  • Hamilton SE, Friess DA (2018) Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat Clim Change 8(3):240-244.

    Article  CAS  Google Scholar 

  • Hamilton SE, Lovette J (2015) Ecuador’s mangrove forest carbon stocks: A spatiotemporal analysis of living carbon holdings and their depletion since the advent of commercial aquaculture. PloS one 10(3):e0118880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain M, Lin CK, Hussain MZ (2001) Goodbye Chakaria Sundarban: the oldest mangrove forest. Wet Sci Prac18(3):19-22.

    Google Scholar 

  • Hossain MS (2001) Biological aspects of the coastal and marine environment of Bangladesh. Ocean Coast Manage 44(3-4):261-282.

    Article  Google Scholar 

  • Humanity watch Carbon Trading, the Sundarbans and Climate Justice, Campaign Paper, Equity and Justice Working Group-Bangladesh, Humanitywatch, 2011.

    Google Scholar 

  • IEA (International Energy Agency) (2013) Definition. Paris, France: Total Primary Energy Supply. http://www.iea.org/stats/defs/Tpes.asp; accessed on 24 June 2013.

    Google Scholar 

  • Iftekhar MS, Saenger P (2008) Vegetation dynamics in the Bangladesh Sundarbans mangroves: a review of forest inventories. Wet Ecol Manage 16(4):291-312.

    Article  Google Scholar 

  • India State of Forest Report (ISFR) (2019).

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: Assessment Report. IPCC, Valencia.

    Book  Google Scholar 

  • IUFRO (2009) Adaptation of forests and people to climate change. A global assessment report. IUFRO World Series 22:224

    Google Scholar 

  • Jana BB, Jana S (2003) The potential and sustainability of aquaculture in India. J Appl Aquacul 13(3-4):283-316.

    Article  Google Scholar 

  • Jones TG, Ratsimba HR, Ravaoarinorotsihoarana L, Cripps G, Bey A (2014) Ecological variability and carbon stock estimates of mangrove ecosystems in north-western Madagascar. Forests 5(1):177-205.

    Article  Google Scholar 

  • Jong JD (1989) Aquaculture in India. Rijksdienst Voor Ondernemend. 2:1117–1152.

    Google Scholar 

  • Levin SA, Lubchenco J (2008) Resilience, robustness, and marine ecosystem-based management. Bioscience 58(1):27-32.

    Article  Google Scholar 

  • Lindsey R (2018) Climate change: atmospheric carbon dioxide. National Oceanographic and Atmospheric Administration, News & Features. August.

    Google Scholar 

  • Kathiresan K, Anburaj R, Gomathi V, Saravanakumar K (2013) Carbon sequestration potential of Rhizophora mucronata and Avicennia marina as influenced by age, season, growth and sediment characteristics in southeast coast of India. J Coast Conserv 17(3):397-408.

    Article  Google Scholar 

  • Kauffman JB, Donato DC (2012) Protocols for the measurement, monitoring and reporting of structure, biomass, and carbon stocks in mangrove forests (pp. 50-p). Bogor, Indonesia: CIFOR.

    Google Scholar 

  • Kauffman JB, Heider C, Cole TG, Dwire KA, Donato DC (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31(2):343-352.

    Article  Google Scholar 

  • Kauffman JB, Heider C, Norfolk J, Payton F (2014) Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol Appl 24(3):518-527.

    Article  PubMed  Google Scholar 

  • Kauffman JB, Hughes RF, Heider C (2009) Dynamics of C and nutrient pools associated with land conversion and abandonment in Neotropical landscapes. Ecol Appl 19:1211-1222.

    Article  PubMed  Google Scholar 

  • Kauffman JB, Steele MD, Cummings DL, Jaramillo VJ (2003) Biomass dynamics associated with deforestation, fire, and, conversion to cattle pasture in a Mexican tropical dry forest. Forest Ecol Manage 176(1-3):1-12.

    Google Scholar 

  • Kennedy H. et al., (2014) In Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.), Intergovernmental Panel on Climate Change, Gland, Switzerland.

    Google Scholar 

  • Khan MNI, Suwa R, Hagihara A (2007) Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil–vegetation system. Wet Ecol Manage 15(2):141-153.

    Article  CAS  Google Scholar 

  • Kongkeo H (1997) Comparison of intensive shrimp farming systems in Indonesia, Philippines, Taiwan and Thailand. Aquacul Res 28(10):789-796.

    Article  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89(2):201-219.

    Article  CAS  Google Scholar 

  • Kusumaningtyas MA, Hutahaean AA, Fischer HW, Pérez-Mayo M, Ransby D, Jennerjahn TC (2019) Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar Coast Mar Sci 218:310-323.

    Article  CAS  Google Scholar 

  • Lewis CJE, Carnell PE, Sanderman J, Baldock JA, Macreadie PI (2018) Variability and vulnerability of coastal ‘blue carbon’stocks: a case study from southeast Australia. Ecosystems 21(2):263-279.

    Article  CAS  Google Scholar 

  • Malik A, Fensholt R, Mertz O (2015) Mangrove exploitation effects on biodiversity and ecosystem services. Biodivers Conserv 24(14):3543-3557.

    Article  Google Scholar 

  • Mall LP (1991) Study of biomass, litter fall, litter decomposition and soil respiration in monogenic mangrove and mixed mangrove forests of Andaman Islands. Trop Ecol 32:144-152.

    Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552-560.

    Article  Google Scholar 

  • MPEDA (2018) Annual Report 2017–18. The Marine Products Export Development Authority. Cochin, India, p. 59.

    Google Scholar 

  • Murdiyarso D, Donato D, Kauffman JB, Kurnianto S, Stidham M, Kanninen M (2009) Carbon storage in mangrove and peatland ecosystems: A preliminary account from plots in Indonesia. Working paper 48. Bogor Banat, Indonesia: Center Internat Forest Res 35:1-35.

    Google Scholar 

  • Murdiyarso D, Hergoualc’h K, Verchot LV (2010) Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc Nat Acad Sci 107(46):19655-19660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdiyarso D, Purbopuspito J, Kauffman JB, Warren MW, Sasmito SD, Donato DC, Manuri S, Krisnawati H, Taberimadon S, Kurnianto S (2015) The potential of Indonesian mangrove forests for global climate change mitigation. Nat Clim Change 5(12):1089-1092.

    Article  CAS  Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM, Valdes L, DeYoung C, et al., (2009) Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal website. www.grida.no. Accessed 2011 Nov 11.

  • Olander LP, Galik CS, Kissinger GA (2012) Operationalizing REDD+: Scope of reduced emissions from deforestation and forest degradation. Curr Opin Environ Sustain 4(6):661-669.

    Article  Google Scholar 

  • Overmars KP, Stehfest E, Tabeau A, van Meijl H, Beltrán AM, Kram T (2014) Estimating the opportunity costs of reducing carbon dioxide emissions via avoided deforestation, using integrated assessment modelling. Land Use Policy 41:45-60.

    Article  Google Scholar 

  • Pandey CN, Pandey R (2013) Carbon sequestration in mangroves of Gujarat, India. Internat J Bot Res 3(2):57-70.

    Google Scholar 

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS One 7(9):e43542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puthucherril TG (2016) Sustainable aquaculture in India: looking back to think ahead. In Aquaculture Law and Policy. Edward Elgar Publishing.

    Google Scholar 

  • Rahman MM (2015) Carbon and nitrogen dynamics and carbon sequestration in soils under different residue management. The Agriculturists 12(2):48-55.

    Article  Google Scholar 

  • Ray R, Ganguly D, Chowdhury C, Dey M, Das S, Dutta MK, Mandal SK, Majumder N, De TK, Mukhopadhyay SK, Jana TK (2011) Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos Environ 45(28):5016-5024.

    Article  CAS  Google Scholar 

  • Richards DR, Friess DA (2016) Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc Nat Acad Sci 113(2):344-349.

    Article  CAS  PubMed  Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Springer Science & Business Media.

    Book  Google Scholar 

  • Sahu SC, Kumar M, Ravindranath NH (2016) Carbon stocks in natural and planted mangrove forests of Mahanadi Mangrove Wetland, East Coast of India. Curr Sci 110:2253-2260.

    Article  CAS  Google Scholar 

  • Sahu SC, Suresh HS, Murthy IK, Ravindranath NH (2015) Mangrove area assessment in India: implications of loss of mangroves. J Earth Sci Climat Change 6(5):1.

    Google Scholar 

  • Sanderman J, Hengl T, Fiske G, Solvik K, Adame MF, Benson L, Bukoski JJ, Carnell P, Cifuentes-Jara M, Donato D, Duncan C (2018) A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ Res Lett 13(5):055002.

    Article  CAS  Google Scholar 

  • Seidensticker J, Hai MA (1983) The Sundarbans wildlife management plan: conservation in the Bangladesh coastal zone.

    Google Scholar 

  • Shahid MA, Islam J (2002) March. Impact of denudation of mangrove forest due to shrimp farming on the coastal environment in Bangladesh. In Technical proceedings of BAU-NURAD workshop on environment and socio-economic impacts of shrimp farming in Bangladesh 5:67-75.

    Google Scholar 

  • Short FT, Wyllie-Echeverria S (1996) Natural and human-induced disturbance of seagrasses. Environ Conserv 23:17-27.

    Article  Google Scholar 

  • Siikamäki J, Sanchirico JN, Jardine SL (2012) Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc Nat Acad Sci 109(36):14369-14374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sillanpää M, Vantellingen J, Friess DA (2017) Vegetation regeneration in a sustainably harvested mangrove forest in West Papua, Indonesia. Forest Ecol Manage 390:137-146.

    Article  Google Scholar 

  • Sjöling S, Mohammed SM, Lyimo TJ, Kyaruzi JJ (2005) Benthic bacterial diversity and nutrient processes in mangroves: impact of deforestation. Estuar Coast Shelf Sci 63(3):397-406.

    Article  CAS  Google Scholar 

  • Spalding M (2010) World atlas of mangroves. Routledge.

    Book  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) IPCC, 2013. Climate change.

    Google Scholar 

  • Suresh B, Manjappa S, Puttaiah ET (2013) Dynamics of phytoplankton succession in Tungabhadra river near Harihar, Karnataka (India). J Microbiol Antimicrob 5(7):65-71.

    Article  Google Scholar 

  • Sweetman AK, Middelburg JJ, Berle AM, Bernardino AF, Schander C, Demopoulos AWJ, Smith CR (2010) Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments. Biogeosciences 7(7).

    Google Scholar 

  • Strangmann A, Bashan Y, Giani L (2008) Methane in pristine and impaired mangrove soils and its possible effect on establishment of mangrove seedlings. Biol Fert Soils 44(3):511.

    Article  CAS  Google Scholar 

  • Thakur S, Maity D, Mondal I, Basumatary G, Ghosh PB, Das P, De TK (2020) Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environ Develop Sustain 1-27.

    Google Scholar 

  • Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang JG (2009) Ecological engineering in aquaculture-potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297(1-4):1-9.

    Article  Google Scholar 

  • UNEP (2014) The importance of mangroves to people: A call to action. Cambridge: UNEP World Conservation Monitoring Centre.

    Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove Forests: One of the World’s Threatened Major Tropical Environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51(10):807-815.

    Article  Google Scholar 

  • Van der Werf GR, Morton DC, DeFries RS, Olivier JG, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2(11):737-738.

    Article  CAS  Google Scholar 

  • Vinod K, Anasu Koya A, Kunhikoya VA, Shilpa PG, Asokan PK, Zacharia PU, Joshi KK (2018) Biomass and carbon stocks in mangrove stands of Kadalundi estuarine wetland, south-west coast of India. Ind J Fisher 65(2):89-99.

    Google Scholar 

  • Vinod K, Asokan PK, Zacharia PU, Ansar CP, Vijayan G, Anasukoya A, Kunhi Koya VA, Nikhiljith M (2019) Assessment of Biomass and Carbon Stocks in Mangroves of Thalassery Estuarine Wetland of Kerala, South West Coast of India. J Coast Res 86(SI):209-217.

    Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Nat Acad Sci 106(30):12377-12381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JB, Lotze, H.K., Micheli, F., Palumbi, S.R. and Sala, E., (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314(5800):787-790.

    Article  CAS  PubMed  Google Scholar 

  • Yee S (2010) REDD and BLUE carbon: carbon payments for mangrove conservation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, K., Ranjan, P., Ramanathan, A. (2021). Estimation of Blue Carbon Stock of Mangrove Ecosystem and Its Dynamics in Relation to Hydrogeomorphic Settings and Land Use-land Cover. In: Rastogi, R.P., Phulwaria, M., Gupta, D.K. (eds) Mangroves: Ecology, Biodiversity and Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-2494-0_8

Download citation

Publish with us

Policies and ethics