Skip to main content
Log in

Methane in pristine and impaired mangrove soils and its possible effect on establishment of mangrove seedlings

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Pristine and impaired mangrove soils (from road construction, aquaculture, and sewage) in Baja California Sur, Mexico were investigated for methane dynamics, related soil properties, and their impact on initial establishment of black mangrove propagules. All soils (Salic Fluvisols and Histosols) had neutral to alkaline pH, were saline, and had variable organic carbon content, and redox potentials. Most pristine mangrove soils showed low methane concentration, low methane production rates, and no methane emission. Impaired mangrove soil (from aquaculture) and mangrove soil affected by sewage water showed high methane concentration, high methane production rates, and high methane emission, thus acting as a methane source. Elevated methane concentrations, similar to levels detected in the impaired mangrove soil, reduce the growth of seedlings under closed chamber conditions. Addition of sulfate to the soil reversed the trend. These results indicate that impaired mangrove soils in dry climatic regions produce and emit methane and that elevated methane concentration in the vicinity of propagules may affect establishment of mangrove seedlings in impaired mangrove soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alongi DM, Tirendi F, Trott LA, Xuan TT (2000) Benthic decomposition rates and pathways in plantations of the mangrove Thizophora apiculata in the Mekong delta, Vietnam. Mar Ecol Prog Ser 194:87–101

    Article  Google Scholar 

  • Alongi DM, Wattayakorn G, Pfitzner J, Tirendi F, Zagorskis I, Brunskill GJ, Davidson A, Clough BF (2001) Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Mar Geol 179:85–103

    Article  CAS  Google Scholar 

  • APHA, AWWA, WPCF (1992) Standard methods for the examination of water and wastewater, 18st edn. American Public Health Association, American Waterworks Association, Water Pollution Control Federation, Washington, DC

    Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Article  CAS  Google Scholar 

  • Bartlett KB, Harriss RC, Sebacher DI (1985) Methane flux from coastal salt marshes. J Geophys Res 90:5710–5720

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biol Biochem 37:1795–1804

    Article  CAS  Google Scholar 

  • Brandstetter A, Sletten RS, Mentler A, Wenzel WW (1996) Estimating dissolved organic carbon in natural waters by UV absorbance (254 nm). J Plant Nutr Soil Sci 159:605–607 (in German)

    CAS  Google Scholar 

  • Chen Z, Wang R, Miao Z (2000) Introduction of Sonneratia species in Guangdong province, China. In: Asia-pacific cooperation on research for conservation of mangroves. Proceedings of an international workshop 26–30 March 2000, Okinawa, Japan. The United Nations University Publ. Tokyo, Japan, pp 257–263

  • Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane—measurements in rice paddies and a discussion. J Geophys Res 86:7203–7209

    Article  CAS  Google Scholar 

  • Cintron G, Lugo AE, Pool DJ, Moris G (1978) Mangroves of arid environments in Puerto Rico and adjacent islands. Biotropica 10:110–121

    Article  Google Scholar 

  • Clarke LD, Hannon NJ (1970) The mangrove swamp and salt marsh communities of the Sydney District: III. Plant growth in relation to salinity and water logging. Ecol 58:351–369

    Article  Google Scholar 

  • Dewes T, Schmitt L (1990) Nitrat-bestimmung in mist-sickersaft mittels UV-absorption. Z Pflanzenernähr Bodenkd 153:365–367

    Article  CAS  Google Scholar 

  • Downton WJS (1982) Growth and osmotic relations of the mangrove Avicennia marina, as influenced by salinity. Aust J Plant Physiol 9:519–528

    CAS  Google Scholar 

  • FAO/ISSS/ISRIC (1998) World reference base for soil resources. World soil resources reports no. 84. FAO, Rome, pp 1–101

    Google Scholar 

  • Giani L, Dittrich K, Martsfeld-Hartmann A, Peters G (1996a) Methanogenesis in salt marsh soils of the North Sea coast of Germany. Eur J Soil Sci 47:175–182

    Article  CAS  Google Scholar 

  • Giani L, Bashan Y, Holguin G, Strangmann A (1996b) Characteristics and methanogenesis of the Balandra lagoon mangrove soils, Baja California Sur, Mexico. Geoderma 72:149–160

    Article  CAS  Google Scholar 

  • Gonzalez-Acosta B, Bashan Y, Hernandez-Saavedra NY, Ascencio F, De la Cruz-Agüero G (2006) Seasonal seawater temperature as the major determinant for populations of culturable bacteria in the sediments of an intact mangrove in an arid region. FEMS Microbiol Ecol 55:311–321

    Article  PubMed  CAS  Google Scholar 

  • Harris RC, Sebacher DI, Bartlett KB, Bartlett DS, Crill PM (1988) Sources of atmospheric methane in the South Florida environment. Global Biogeochem Cy 2:231–243

    Google Scholar 

  • Heyer J (1990) Der Kreislauf des Methans. Akademie-Verlag, Berlin (in German)

    Google Scholar 

  • Holguin G, Guzman MA, Bashan Y (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: their isolation, identification and in vitro interaction with rhizospere Staphylococcus sp. FEMS Microbiol Ecol 101:207–216

    Article  CAS  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    Article  CAS  Google Scholar 

  • Holguin G, Gonzalez-Zamorano P, de-Bashan LE, Mendoza R, Amador E, Bashan Y (2006) Mangrove health in an arid environment encroached by urban development – a case study. Sci Total Environ 363:260–274

    Article  PubMed  CAS  Google Scholar 

  • Holmer M, Kristensen E (1994) Coexistence of sulfate reduction and methane production in an organic-rich sediment. Mar Ecol Prog Ser 107:177–184

    Article  CAS  Google Scholar 

  • Hütsch BW (1998) Sources and sinks of methane in German agroecosystems in context of the global methane budget. . Agribiological Research–Zeitschrift für Agrarbiologie, Agrikulturchemie, Ökologie 51:75–87

    Google Scholar 

  • Ida A (2000) Sustainable mangrove management in Indonesia. In: Asia-pacific cooperation on research for conservation of mangroves. Proceedings of an international workshop 26–30 March 2000, Okinawa, Japan. The United Nations University Publ. Tokyo, Japan, pp 233–239

  • Jennerjahn TC, Ittekkot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30

    Article  PubMed  CAS  Google Scholar 

  • Kakuma S (2000) Co-management of coastal fisheries resources in tropic and sub-tropic regions. In: Asia-pacific cooperation on research for conservation of mangroves. Proceedings of an international workshop 26–30 March 2000, Okinawa, Japan. The United Nations University Publ. Tokyo, Japan, pp 171–182

  • King GM (1984) Utilization of hydrogen, acetate and “non-competitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol J 3:275–306

    Article  CAS  Google Scholar 

  • Lee SY (1998) Ecology role of grapsid crabs in mangrove ecosystems—a review. Mar Freshwater Res 49:335–343

    Article  Google Scholar 

  • Lee SY (1999) Tropical mangrove ecology: physical and biotic factors influencing ecosystem structure and function. Aust J Ecol 24:355–366

    Article  Google Scholar 

  • Lord CJ III, Church TM (1983) The geochemistry of salt marshes: sedimentary ion diffusion, sulfate reduction and pyritization. Geochim Cosmochim Acta 47:11–18

    Article  Google Scholar 

  • Lu CY, Wong YS, Tam NFY, Ye Y, Lin P (1999) Methane flux and production from sediments of a mangrove wetland on Hainan Island, China. Mangroves Salt Marshes 3:41–49

    Article  Google Scholar 

  • McMillan C (1971) Environmental factors affecting seedling establishment of the black mangrove on the central Texas coast. Ecology 52:927–930

    Article  Google Scholar 

  • Moreno-Casasola P (2000) Mangroves, an area of conflict between cattle ranchers and fishermen. In: Asia-pacific cooperation on research for conservation of mangroves. Proceedings of an international workshop 26–30 March 2000, Okinawa, Japan. The United Nations University Publ. Tokyo, Japan, pp 153–167

  • Mukhopadhyay SK, Biswas H, Das KL, De TK, Jana TK (2001) Diurnal variation of carbon dioxide and methane exchange above Sudarbans mangrove forest, in NW coast of India. Indian J Mar Sci 30:70–74

    Google Scholar 

  • Mukhopadhyay SK, Biswas H, De TK, Sen BK, Sen S, Jana TK (2002) Impact of Sundarban mangrove biosphere on the carbon dioxide and methane mixing ratios at the NE coast of Bay of Bengal, India. Atmos Environ 36:629–638

    Article  CAS  Google Scholar 

  • Naidoo G (1987) Effects of salinity and nitrogen on growth and water relations in the mangrove, Avicennia marina (Forsk.) Vierh. New Phytol 107:317–325

    Article  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees Struct Funct 18:167–174

    Article  CAS  Google Scholar 

  • Patterson CS, Mendelssohn IA, Swenson EM (1993) Growth and survival of Avicennia germinans seedlings in a mangal/salt marsh community in Louisiana, U.S.A. J Coast Res 9:801–810

    Google Scholar 

  • Perdrin-Aviles S, Padilla-Arredondo G, Diaz-Rivera E, Sirkin L, Stuckenrath R (1990) Estatigrafia del pleistoceno superior-holoceno en el area de la laguna costera de Balandra, estado de Baja California Sur. Revista de la Universidad Nacional Autonoma de Mexico, Instituto de Geologia 9:170–176

    Google Scholar 

  • Purvaja R, Ramesh R (2000) Human impacts on methane emission from mangrove ecosystems in India. Regional Environmental Change 1:86–97

    Article  Google Scholar 

  • Purvaja R, Ramesh R (2001) Natural and anthropogenic methane emission from coastal wetlands of South India. Environ Manag 27:547–557

    Article  CAS  Google Scholar 

  • Sotomayor D, Corredor JE, Morell JM (1994) Methane flux from mangrove sediments along the southwestern coast of Puerto Rico. Estuaries 17:140–147

    Article  CAS  Google Scholar 

  • Spalding MD, Blasco F, Field CD (eds)(1997) World mangrove atlas. The International Society for Mangrove Ecosystems, Okinawa, Japan. 178 pp

  • Toledo G, Bashan Y, Soeldner A (1995a) Cyanobacteria and black mangroves in Northwestern Mexico: colonization, and diurnal and seasonal nitrogen fixation on aerial roots. Can J Microbiol 41:999–1011

    Article  CAS  Google Scholar 

  • Toledo G, Bashan Y, Soeldner A (1995b) In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria. Can J Microbiol 41:1012–1020

    CAS  Google Scholar 

  • Toledo G, Rojas A, Bashan Y (2001) Monitoring of black mangrove restoration with nursery-reared seedlings on an arid coastal lagoon. Hydrobiología 444:101–109

    Article  Google Scholar 

  • Tyler SC (1991) The global methane budget. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington DC, pp 7–38

    Google Scholar 

  • Verma A, Subramanian V, Ramesh R (1999) Day-time variation in methane emission from two tropical urban wetlands in Chennai, Tamil Nadu, India. Curr Sci 76:1020–1021

    Google Scholar 

  • Warne K, Laman T (2007) Forests of the tide. National Geog 211(2):132–151

    Google Scholar 

  • Watson A, Nedwell DB (1998) Methane production and emission from peat—the influence of anions (sulfate, nitrate) from acid-rain. Atmos Environ 32:3239–3245

    Article  CAS  Google Scholar 

  • Yu KW, Chen GX, Xu H (2006) Rice yield reduction by chamber enclosure: a possible effect on enhancing methane production. Biol Fertil Soils 43:257–261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alejandro Amador and Monika Noormann for helping with field sampling and Ariel Cruz and Gunda Sängerlaub for technical assistance. This study was partially supported by the Bashan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoav Bashan.

Additional information

This paper is in memory of the late mangrove researcher Dr. Gina Holguin of Mexico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strangmann, A., Bashan, Y. & Giani, L. Methane in pristine and impaired mangrove soils and its possible effect on establishment of mangrove seedlings. Biol Fertil Soils 44, 511–519 (2008). https://doi.org/10.1007/s00374-007-0233-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-007-0233-7

Keywords

Navigation