Skip to main content

Total Synthesis, Biological Evaluation, and 3D Structural Analysis of a Cyclodepsipeptide Natural Product

  • Chapter
  • First Online:
Middle Molecular Strategy
  • 355 Accesses

Abstract

Cyclodepsipeptide natural products have been widely used in the production of anticancer drugs because of their high potency and structural diversity. Therefore, it is important to obtain a comprehensive understanding of their structure and function. As such, this study presents the total synthesis of apratoxin A, which is a middle-sized cyclodepsipeptide natural product. It also describes the solid-phase synthesis of apratoxin A derivatives, chemical probe synthesis, and its protein-network analysis. Moreover, the design and synthesis of apratoxin A mimetics, their structure-activity relationships, and 3D structural analysis are presented. It is worth acknowledging that obtaining a predictable method for 3D analysis of macrocycles will facilitate the design and synthesis of biologically active macrocycles in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marsault E, Peterson ML (eds) (2017) Practical medicinal chemistry with macrocycles. John Wiley & Sons Inc, NJ

    Google Scholar 

  2. Giordanetto F, Kihlberg J (2014) Macrocyclic drugs and clinical candidates: What can medicinal chemists learn from their properties? J Med Chem 57:278–295. https://doi.org/10.1021/jm400887j

    Article  CAS  PubMed  Google Scholar 

  3. Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscule. J Am Chem Soc 123:5418–5423. https://doi.org/10.1021/ja010453j

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Forsyth CJ (2003) Total synthesis of apratoxin A. J Am Chem Soc 125:8734–8735. https://doi.org/10.1021/ja036050w

    Article  CAS  PubMed  Google Scholar 

  5. Doi T, Numajiri Y, Munakata A, Takahashi T (2006) Total synthesis of apratoxin A. Org Lett 8:531–534. https://doi.org/10.1021/ol052907d

    Article  CAS  PubMed  Google Scholar 

  6. Ma D, Zou B, Cai G, Hu X, Liu JO (2006) Total synthesis of the cyclodepsipeptide apratoxin A and its analogues and assessment of their biological activities. Chem Eur J 12:7615–7626. https://doi.org/10.1002/chem.200600599

    Article  CAS  PubMed  Google Scholar 

  7. Masuda Y, Suzuki J, Onda Y, Fujino Y, Yoshida M, Doi T (2014) Total synthesis and conformational analysis of apratoxin C. J Org Chem 79:8000–8009. https://doi.org/10.1021/jo501130b

    Article  CAS  PubMed  Google Scholar 

  8. Robertson BD, Wengryniuk SE, Coltart DM (2012) Asymmetric total synthesis of apratoxin D. Org Lett 14:5192–5195. https://doi.org/10.1021/ol302309c

    Article  CAS  PubMed  Google Scholar 

  9. Wu P, Cai W, Chen QY, Xu S, Yin R, Li Y, Zhang W, Luesch H (2016) Total synthesis and biological evaluation of apratoxin E and its C30 epimer: configurational reassignment of the natural product. Org Lett 18:5400–5403. https://doi.org/10.1021/acs.orglett.6b02780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rastelli EJ, Coltart DM (2018) Synthesis and biological activity of apratoxin derivatives. Tetrahedron 74:2269–2290. https://doi.org/10.1016/j.tet.2017.11.004

    Article  CAS  Google Scholar 

  11. Liu Y, Law BK, Luesch H (2009) Apratoxin a reversibly inhibits the secretory pathway by preventing cotranslational translocation. Mol Pharmacol 76:91–104. https://doi.org/10.1124/mol.109.056085

    Article  CAS  PubMed  Google Scholar 

  12. Huang KC, Chen Z, Jiang Y, Akare S, Kolber-Simonds D, Condon K, Agoulnik S, Tendyke K, Shen Y, Wu KM, Mathieu S, Hw Choi, Zhu X, Shimizu H, Kotake Y, Gerwick WH, Uenaka T, Woodall-Jappe M, Nomoto K (2016) Apratoxin A shows novel pancreas-targeting activity through the binding of Sec 61. Mol Cancer Ther 15:1208–1216. https://doi.org/10.1158/1535-7163.MCT-15-0648

    Article  CAS  PubMed  Google Scholar 

  13. Puyenbroeck VV, Vermeire K (2018) Inhibitors of protein translocation across membranes of the secretory pathway: novel antimicrobial and anticancer agents. Cell Mol Life Sci 75:1541–1558. https://doi.org/10.1007/s00018-017-2743-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tidgewell K, Engene N, Byrum T, Media J, Doi T, Valeriote FA, Gerwick WH (2010) Evolved diversification of a modular natural product pathway: Apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. ChemBioChem 11:1458–1466. https://doi.org/10.1002/cbic.201000070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen QY, Liu Y, Cai W, Luesch H (2014) Improved total synthesis and biological evaluation of potent apratoxin S4 based anticancer agents with differential stability and further enhanced activity. J Med Chem 57:3011–3029. https://doi.org/10.1021/jm4019965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai W, Ratnayake R, Gerber MH, Chen QY, Yu Y, Derendorf H, Trevino JG, Luesch H (2019) Development of apratoxin S10 (Apra S10) as an anti-pancreatic cancer agent and its preliminary evaluation in an orthotopic patient-derived xenograft (PDX) model. Invest New Drugs 37:364–374. https://doi.org/10.1007/s10637-018-0647-0

    Article  CAS  PubMed  Google Scholar 

  17. Onda Y, Fukushi K, Ohsawa K, Yoshida M, Masuda Y, Doi T (2020) Synthesis of a biphenylalanine analogue of apratoxin A displaying substantially enhanced cytotoxicity. Heterocycles 101:679–691. https://doi.org/10.3987/COM-19-S(F)35

    Article  CAS  Google Scholar 

  18. Numajiri Y, Takahashi T, Doi T (2009) Total synthesis of (−)-apratoxin A, 34-epimer, and its oxazoline analogue. Chem Asian J 4:111–125. https://doi.org/10.1002/asia.200800365

    Article  CAS  PubMed  Google Scholar 

  19. Doi T, Numajiri Y, Takahashi T, Takagi M, Shin-ya K (2011) Solid-phase total synthesis of (−)-apratoxin A and its analogues and their biological evaluation. Chem Asian J 6:180–188. https://doi.org/10.1002/asia.201000549

    Article  CAS  PubMed  Google Scholar 

  20. Natsume T, Yamauchi Y, Nakayama H, Shinkawa T, Yanagida M, Takahashi N, Isobe T (2002) A direct nanoflow liquid chromatography–tandem mass spectrometry system for interaction proteomics. Anal Chem 74:4725–4733. https://doi.org/10.1021/ac020018n

    Article  CAS  PubMed  Google Scholar 

  21. Shinya K, Natsume T, Doi T (2005) Labeling substance and chimera substance, process for preparing these substances, and method of biosubstance trapping, structural analysis or/and identification with use of the labeling substance. PCT Int Appl WO 2005094187:A2

    Google Scholar 

  22. Hayakawa N, Noguchi M, Takeshita S, Eviryanti A, Seki Y, Nishio H, Yokoyama R, Noguchi M, Shuto M, Shima Y, Kuribayashi K, Kageyama S, Eda H, Suzuki M, Hatta T, Iemura S, Natsume T, Tanabe I, Nakagawa R, Shiozaki M, Sakurai K, Shoji M, Andou A, Yamamoto T (2014) Structure–activity relationship study, target identification, and pharmacological characterization of a small molecular IL-12/23 inhibitor, APY0201. Bioorg Med Chem 22:3021–3029. https://doi.org/10.1016/j.bmc.2014.03.036

    Article  CAS  PubMed  Google Scholar 

  23. Numajiri Y (2009) Ph.D. thesis, Tokyo Institute of Technology, TT00009918

    Google Scholar 

  24. Parsons JG, Sheehan CS, WuIan Z, James IW, Bray AM (2003) A review of solid-phase organic synthesis on SynPhaseTM lanterns and SynPhaseTM crowns. Method Enzymol 369:39–74. https://doi.org/10.1016/S0076-6879(03)69003-8

    Article  CAS  Google Scholar 

  25. Onda Y, Masuda Y, Yoshida M, Doi T (2016) Conformation-based design and synthesis of apratoxin A mimetics modified at the α, β-unsaturated thiazoline moiety. J Med Chem 60:6751–6765. https://doi.org/10.1021/acs.jmedchem.7b00833

    Article  CAS  Google Scholar 

  26. MacroModel, version 9.9, Schrödinger, Inc., New York

    Google Scholar 

Download references

Acknowledgements

The author thanks all the coworkers listed in the references. This work was supported by grants from the MEXT (Nos. 23,310,145, and 26,282,208), JSPS (JP15H05837 in Middle Molecular Strategy), the Naito Foundation (2009), and Astellas Foundation for Research on Metabolic Disorders (2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Doi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doi, T. (2021). Total Synthesis, Biological Evaluation, and 3D Structural Analysis of a Cyclodepsipeptide Natural Product. In: Fukase, K., Doi, T. (eds) Middle Molecular Strategy. Springer, Singapore. https://doi.org/10.1007/978-981-16-2458-2_2

Download citation

Publish with us

Policies and ethics