Skip to main content

Optimized Molecular Structure, Vibrational Spectra, and Frontier Molecular Orbitals of 1,4-Benzene Diamine with Palladium Electrodes as a Molecular Switch—A Computational Analysis

  • Conference paper
  • First Online:
Proceedings of the International e-Conference on Intelligent Systems and Signal Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1370))

  • 581 Accesses

Abstract

Molecular electronics focuses on shrinking the electronic circuit with functional single-molecular devices. Molecular logic circuits have the potential to replace conventional semiconductor logic circuits very shortly. This emerging field aims at investigating molecules with exciting properties and discovering strategies to acquire reliable and replicable contacts between the molecular backbone and the nanoelectrodes. Here, molecular structure and vibrational spectroscopic studies of 1,4-benzene diamine (BDA) with palladium nanoelectrode have been investigated as a molecular electronic switch using the density functional theory (DFT) and Hartree–Fock (HF) method with BPV86 (Becke Perdew 1983 functional modified by Vosko) and basis set Stuttgart/Dresden (SDD). The noticed vibrational spectra and frontier molecular orbitals have been resolved and analyzed in detail for the comparison of both the OFF and ON state of electrical conductivity. This paper provides salient information regarding enhancing the conductivity of benzene-based single-molecular switches with metal nanoelectrodes by maintaining the stability and switching property. The current flow in 1,4-benzene diamine with the palladium nanoelectrode has been analyzed using theoretical simulations and it is extensively reconcilable with the recent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Nasrollahzadeh, S. Sajadi, M. Sajjadi, Z. Issaabadi, An introduction to nanotechnology. Interface Sci. Technol. 1(28), 1–27 (2019)

    Google Scholar 

  2. D.W. Chang, H.J. Choi, J.B. Baek, Wet-chemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 3(14), 7659–7665 (2015)

    Article  Google Scholar 

  3. T. Masateru, Paving the way to single-molecule chemistry through molecular electronics . Phys. Chem. Chem. Phys. 21(19), 9641–9650 (2019)

    Article  Google Scholar 

  4. M. Bravo-Sanchez, T.J. Simmons, M.A. Vidal, Liquid crystal behavior of single wall carbon nanotubes. Carbon 48(12), 3531–3542 (2010)

    Article  Google Scholar 

  5. S. Devisree, A. Kumar, R.T. Koyadeen, A methodology to simulate and analyse molecules as molecular switches. Int. J. Simul.-Syst. Sci. Technol. 17, 22–31 (2016)

    Google Scholar 

  6. J.M. Tour, Molecular electronics. Synthesis and testing of components. Acc. Chem. Res 33(11), 791–804 (2000)

    Google Scholar 

  7. D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Molecular-scale electronics: from concept to function. Chem. Rev. 116(7), 4318–4440 (2016)

    Article  Google Scholar 

  8. Y. Sugita, A. Taninaka, S. Yoshida, O. Takeuchi, H. Shigekawa, The effect of nitrogen lone-pair interaction on the conduction in a single-molecule junction with amine-Au bonding. Sci. Rep. 8(1), 1–8 (2018)

    Google Scholar 

  9. M. Kiguchi, S. Fujii, Governing the metal–molecule interface: towards new functionality in single-molecule junctions. Bull. Chem. Soc. Jpn. 90(1), 1–11 (2017)

    Article  Google Scholar 

  10. Z. Zhang, H.J. Guo, Transferability of coarse-grained force field for n CB liquid crystal systems. J. Phys. Chem. B 118(17), 4647–4660 (2014)

    Article  Google Scholar 

  11. M.V. Gorkunov, M.A. Osipov, A. Kocot, J.K. Vij, Molecular model of biaxial ordering in nematic liquid crystals composed of flat molecules with four mesogenic groups. Phys. Rev. E 81(6), 061702 (2010)

    Article  Google Scholar 

  12. K.T. Rafsa, K. Anand, R. Abdul, H.G. Vilas, Theoretical investigation of design methodology, optimized molecular geometries, and electronic properties of benzene-based single molecular switch with metal nanoelectrodes. J. Nanomater. 6260735 (2020).

    Google Scholar 

  13. S. Singh, H. Singh, T. Karthick, P. Tandon, D.H. Dethe, R.D. Erande, Conformational study and vibrational spectroscopic (FT-IR and FT-Raman) analysis of an alkaloid–borreverine derivative. Anal. Sci. 33(1), 99–104 (2017)

    Article  Google Scholar 

  14. W. Koch, M.C. Holthansen, A Chemist’s Guide to Density Functional Theory, 2nd edn. (Wiley-VCH, Weinheim, 2001)

    Book  Google Scholar 

  15. M.J.E.A. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, Gaussian 09, Revision d. 01, vol. 201 (Gaussian. Inc., Wallingford CT, 2009)

    Google Scholar 

  16. G. Keresztury, J.M. Chalmers, P.R. Griffith, Raman Spectroscopy Theory in Handbook of Vibrational Spectroscopy, vol. 1 (Wiley & Sons Ltd., New York, 2002)

    Google Scholar 

  17. J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc, Pittsburg, USA, 1996).

    Google Scholar 

  18. R. Walesa, T. Kupka, M.A. Broda, Density functional theory (DFT) prediction of structural and spectroscopic parameters of cytosine using harmonic and anharmonic approximations . Struct. Chem. 26(4), 1083–1093 (2015)

    Article  Google Scholar 

  19. V. Krishnakumar, R.J. Xavier, Normal coordinate analysis of 2-mercapto and 4, 6-dihydroxy-2-mercapto pyrimidines. Indian J. Pure Appl. Phys. 41, 597–601 (2003)

    Google Scholar 

  20. S. Seshadri, M.P. Rasheed, R. Sangeetha, Vibrational spectroscopic (FT-IR and FT-Raman) studies, HOMO LUMO analysis and electrostatic potential surface of 2-amino-4, 5-dimethyl-3-furancarbonitrile. IOSR J. Appl. Chem. 15, 87–100 (2015)

    Google Scholar 

  21. V. Nagarajan, R. Chandiramouli, First-principles studies on electronic properties of Oligo-p-phenylene molecular device. Solid State Commun. 269, 50–57 (2018)

    Article  Google Scholar 

  22. R.P. Kaur, R. Preet, R.S. Sawhney, D. Engles, Quantum tunneling through aromatic molecular junctions for molecular devices: a review. Chin. J. Phys. 56(5), 2226–2234 (2018)

    Article  Google Scholar 

  23. P.L. Praveen, D.P. Ojha, Photosensitivity, substituent and solvent-induced shifts in UV-visible absorption bands of naphthyl-ester liquid crystals: a comparative theoretical approach. Liq. Cryst. 41(6), 872–882 (2014)

    Article  Google Scholar 

  24. W.R. Yan, X. Jin, S.Y. Guan, X.G. Zhang, R. Pang, Z.Q. Tian, D.Y. Wu, B.W. Mao, Theoretical study of quantum conductance of conjugated and nonconjugated molecular wire junctions. J. Phys. Chem. C 120(22), 11820–11830 (2016)

    Google Scholar 

  25. M.A. Abbas, F.H. Hanoon, L.F. Al-Badry, Possibility designing XNOR and NAND molecular logic gates by using single benzene ring. Solid State Commun. 263, 42–49 (2017)

    Article  Google Scholar 

  26. V.M. Geskin, C. Lamber, J.L. Bredas, Origin of high second-and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. J. Am. Chem. Soc. 125(50), 15651–15658 (2003)

    Article  Google Scholar 

  27. D.A. Kleinman, Nonlinear dielectric polarization in optical media. Phys. Rev. 126(6), 1977 (1962)

    Article  Google Scholar 

  28. S. Prasad, D.P. Ojha, Optimized molecular geometries, vibrational spectra, and frontier molecular orbital of fluorinated liquid crystals-a comparative quantum chemical calculations. Mol. Cryst. Liq. Cryst. 669(1), 12–26 (2018)

    Article  Google Scholar 

  29. V. Mukherjee, T. Yadav, Conformational study of neutral histamine monomer and their vibrational spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 165, 167–175 (2016)

    Article  Google Scholar 

  30. S. Prasad, D.P. Ojha, Molecular structure, vibrational spectroscopic and chemical reactivity of nematogenic pn-alkylbenzoic acids: a comparative computational analysis. Mol. Cryst. Liq. Cryst. 665(1), 52–63 (2018)

    Article  Google Scholar 

  31. S. Prasad, D.P. Ojha, Study of group charges, molecular conformations, and electrochemical properties of nematogens: a DFT approach. Am. J. Mater. Sci. 7(2), 41–45 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koyadeen, T.R., Rajak, A.R.A., Gaidhane, V.H. (2022). Optimized Molecular Structure, Vibrational Spectra, and Frontier Molecular Orbitals of 1,4-Benzene Diamine with Palladium Electrodes as a Molecular Switch—A Computational Analysis. In: Thakkar, F., Saha, G., Shahnaz, C., Hu, YC. (eds) Proceedings of the International e-Conference on Intelligent Systems and Signal Processing. Advances in Intelligent Systems and Computing, vol 1370. Springer, Singapore. https://doi.org/10.1007/978-981-16-2123-9_35

Download citation

Publish with us

Policies and ethics