Skip to main content

Synthesis, Characterization, Physical Properties and Applications of Metal Borides

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

There is a need to understand boron and boron chemistry of metals and non-metals. Boron is an electron-deficient atom in bonding and can react with other elements (except noble gases) to form stable compounds, namely B2H6, MgB2, AlB2, B4C, SiB3, BN, Cr2B, Fe3B, ZrB2, LaB6, etc. It forms tetrahedral, cage-type, trigonal and layered structures, etc. B–B bond can be of single (B–B), double (B = B) or triple (B≡B) types. In metal-rich borides, metal–metal interaction occurs. They are used as catalysts, imparting materials for mechanical, thermal and chemical stability, magnetic, superconducting and coating materials, etc. In this article, several ways of synthesis of metal borides and characterization techniques have been discussed. Also, the synthesis methods for nanostructured metal borides are elaborated. The properties (magnetism, electronic structure, electrical resistivity, optics) of some selected compounds of metal borides in addition to BN, CN are described. Lastly, the applications of selected borides are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ningthoujam RS (2017) Synthesis, characterization of borides, carbides, nitrides and their applications. In: Banerjee S, Tyagi AK (eds) 2017 in Materials under extreme conditions: Recent trends and future prospects. Elsevier Inc., USA, Chapter 10, pp 337–376

    Google Scholar 

  2. Ningthoujam RS, Vatsa RK, Prajapat CL, Yashwant G, Ravikumar G (2010) Interaction between amorphous ferromagnetic Co–Fe–B particles in conducting silver matrix prepared by chemical reduction route. J Alloys Comp (Lett) 492:L40

    Article  CAS  Google Scholar 

  3. Peshev P, Leyarovska L, Bliznakov G (1968) On the borothermic preparation of some vanadium, niobium and tantalum borides. J Less-Common Metals 15:259–267

    Article  CAS  Google Scholar 

  4. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C (2013) Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev 113:7981–8065

    Article  CAS  Google Scholar 

  5. Pan L-M (1992) Phase equilibrium and elastic moduli of rapidly solidified Fe-Cr-Mo-B and Fe-Cr-Ni-B alloys, Ph.D. Thesis, University of Surrey

    Google Scholar 

  6. Franke P, Neuschutz D (2004) Binary systems Part 2. Elements and binary systems from B-C to Cr-Zr. Landolt-Bornstein-Group IV Phys Chem 19B2:1–4

    Google Scholar 

  7. Ningthoujam RS, Gajbhiye NS (2015) Synthesis, electron transport properties of transition metal nitrides and applications. Prog Mater Sci 50:50–154

    Article  Google Scholar 

  8. Ningthoujam RS, Sudhakar N, Rajeev KP, Gajbhiye NS (2002) Electrical resistivity study of La, B doped nanocrystalline superconducting vanadium Nitride. J Appl Phys 91:6051

    Article  CAS  Google Scholar 

  9. Gajbhiye NS, Ningthoujam RS, Weissmuller J (2002) Synthesis and magnetic studies of nanocrystalline nickel nitride material. Phys Stat Sol (a) 189:691

    Article  CAS  Google Scholar 

  10. Ningthoujam RS, Gajbhiye NS (2004) Magnetic and current density studies on nanostructured vanadium nitride material. Ind J Phys 78A(1):89

    CAS  Google Scholar 

  11. Ningthoujam RS, Gajbhiye NS (2004) Thermal decomposition study of nanocrystalline Ni3N. Ind J Phys 78A(2):265

    CAS  Google Scholar 

  12. Sudhakar N, Ningthgoujam RS, Rajeev KP, Nigam AK, Weissmuller J, Gajbhiye NS (2004) Effect of La, B doping on the electrical resistivity and magnetic susceptibility of nanocrystalline vanadium nitride. J Appl Phys 96:688

    Article  CAS  Google Scholar 

  13. Gajbhiye NS, Ningthoujam RS, Weissmuller J (2004) Mössbauer study of nanocrystalline ε-Fe3-xCoxN system. Hyperfine Interact 156:51

    Article  Google Scholar 

  14. Gajbhiye NS, Panda RN, Ningthoujam RS, Bhattacharyya S (2004) Magnetism of nanostructured iron nitride (Fe-N) systems. Phys Stat Sol (c) 1:3252

    Article  CAS  Google Scholar 

  15. Gajbhiye NS, Ningthoujam RS (2004) Structural, electrical and magnetic studies of nanocrystalline δ-MoN and γ-Mo2N. Phys Stat Sol (c) 1:3449

    Article  CAS  Google Scholar 

  16. Gajbhiye NS, Ningthoujam RS (2006) Low temperature synthesis, crystal structure and thermal stability studies of nanocrystalline VN particles. Mat Res Bull 41:1612

    Article  CAS  Google Scholar 

  17. Gajbhiye NS, Ningthoujam RS, Bhattacharyya S (2005) Magnetic properties of Co and Ni substituted ε-Fe3N nanoparticles. Hyperfine Interact 164:17

    Article  Google Scholar 

  18. Ningthoujam RS, Gajbhiye NS (2008) Magnetic study of single domain ε-Fe3N nanoparticles synthesized by precursor techniques. Mater Res Bull 43:1079

    Article  CAS  Google Scholar 

  19. Dewangan KC, Ningthoujam RS, Kurian S, Gajbhiye NS (2008) Magnetic and Mössbauer properties of Fe doped VN nanoparticles. Hyperfine Interact 183:185

    Article  CAS  Google Scholar 

  20. Ningthoujam RS, Gajbhiye NS (2010) Magnetization studies on ε- Fe2.4Co0.6N nanoparticles. Mater Res Bull 45:499

    Google Scholar 

  21. Ningthoujam RS, Panda RN, Gajbhiye NS (2012) Variation of intrinsic magnetic parameters of single domain Co-N interstitial nitrides synthesized via hexa-ammine cobalt nitrate route. Mater Chem Phys 134:377–381

    Article  CAS  Google Scholar 

  22. Ningthoujam RS (2012) Enhancement of luminescence by rare earth ions doping in semiconductor host. In Rai SB, Dwivedi Y (eds) Nova Science Publishers Inc, USA, Chapter 7, pp 145–182

    Google Scholar 

  23. Ningthoujam RS, Mishra R, Das D, Dey GK, Kulshreshtha SK (2008) Excess enthalpy and luminescence studies of SnO2 nanoparticles. J Nanosci Nanotech 8:4176

    Article  CAS  Google Scholar 

  24. Ningthoujam RS, Vatsa RK, Vinu A, Ariga K, Tyagi AK (2009) Room temperature exciton formation in SnO2 nanocrystals in SiO2: Eu matrix: Quantum dot system, heat-treatment effect. J Nanosci Nanotech 9:2634

    Article  CAS  Google Scholar 

  25. Singh LR, Ningthoujam RS, Singh SD (2009) Tuning of ultra-violet to green emission by choosing suitable excitation wavelength in ZnO: quantum dot, nanocrystals and bulk. J Alloys Comp 487:466

    Article  CAS  Google Scholar 

  26. Ningthoujam RS, Gautam A, Padma N (2017) Oleylamine as reducing agent in syntheses of magic-size clusters and monodisperse quantum dots: optical and photoconductivity studies. Phys Chem Chem Phys 19:2294–2303

    Article  CAS  Google Scholar 

  27. Soni AK, Joshi R, Jangid K, Tewari R, Ningthoujam RS (2018) Low temperature synthesized SrMoO4:Eu3+ nanophosphors functionalized with ethylene glycol: a comparative study of synthesize route, morphology, luminescence and annealing. Mater Res Bull 103:1–12

    Article  CAS  Google Scholar 

  28. Wangkhem R, Yaba T, Singh NS, Ningthoujam RS (2018) Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: Energy transfer studies. J Appl Phys 123:124303

    Google Scholar 

  29. Ningombam GS, Ningthoujam RS, Kalkura SN, Singh NR (2018) Induction heating efficiency of water dispersible Mn0.5Fe2.5O4@YVO4:Eu3+ magnetic-luminescent nanocomposites in acceptable AC magnetic Field: Haemocompatibility and cytotoxicity studies. J Phys Chem B 122:6862–6871

    Google Scholar 

  30. Prasad AI, Singh LR, Joshi R, Ningthoujam RS (2018) Luminescence study on crystalline phase of Y2Si2O7 from mesoporous silica and Y2O3: Ln3+ at 900 ̊C. AIP Adv 8:105310

    Google Scholar 

  31. Yaiphaba N, Ningthoujam RS, Singh NR, Vatsa RK (2010) Luminescence properties of redispersible Tb3+-Doped GdPO4 nanoparticles prepared by an ethylene glycol route. Eur J Inorg Chem 2682

    Google Scholar 

  32. Gajbhiye NS, Ningthoujam RS, Ahmed A, Panda DK, Umre SS, Sharma SJ (2008) Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles: Luminescence studies. Pramana J Phys 70:313

    Article  CAS  Google Scholar 

  33. Meetei SD, Singh SD, Singh NS, Sudarsan V, Ningthoujam RS, Tyagi M, Gadkari SC, Tewari R, Vatsa RK (2012) Crystal structure and photoluminescence correlations in white emitting nanocrystalline ZrO2:Eu3+ phosphor: effect of doping and annealing. J Lumin 132:537–544

    Article  Google Scholar 

  34. Ningthoujam RS, Shukla R, Vatsa RK, Duppel V, Kienle L, Tyagi AK (2009) Gd2O3:Eu3+ particles prepared by glycine-nitrate combustion: phase, concentration, annealing, and luminescence studies. J Appl Phys 105:084304

    Google Scholar 

  35. Singh BP, Parchur AK, Ningthoujam RS, Ansari AA, Singh P, Rai SB (2014) Influence of Gd3+ co-doping on structural property of CaMoO4:Eu. Dalton Trans 43:4770–4778

    Article  CAS  Google Scholar 

  36. Parchur AK, Ansari AA, Singh BP, Hasan TN, Syed NA, Rai SB, Ningthoujam RS (2014) Enhanced luminescence of CaMoO4: Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe3O4: cytotoxicity assessing on human liver cancer cells and mesanchymal stem cells. Integr Biol 6:53–64

    Article  CAS  Google Scholar 

  37. Okram R, Yaiphaba N, Ningthoujam RS, Singh NR (2014) Is higher ratio of monoclinic to tetragonal in LaVO4 a better luminescence host? Redispersion and polymer film formation. Inorg Chem 53:7204–7213

    Article  CAS  Google Scholar 

  38. Singh LP, Srivastava SK, Mishra R, Ningthoujam RS (2014) Multifunctional hybrid nanomaterials from water dispersible CaF2:Eu3+, Mn2+ and Fe3O4 for luminescence and hyperthermia application. J Phys Chem C 118:18087–18096

    Article  CAS  Google Scholar 

  39. Sahu NK, Singh NS, Ningthoujam RS, Bahadur D (2014) Ce3+ sensitized GdPO4:Tb3+ nanorods: an investigation on energy transfer, luminescence switching and quantum yield. ACS Photonics 1:337–346

    Article  CAS  Google Scholar 

  40. Matsudaria T, Itoh H, Naka S, Hamamoto H (1989) Synthesis of niobium boride powder by solid state reaction between niobium and amorphous boron. J Less-Common Met 155:207–214

    Article  Google Scholar 

  41. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64

    Article  CAS  Google Scholar 

  42. Kaptay G, Kuznetsov SA (1999) Electrochemical synthesis of refractory borides from molten salts. Plasmas Ions 2:45–56

    Article  CAS  Google Scholar 

  43. Yeh CL, Lin JZ, Wang HJ (2012) Formation of chromium borides by combustion synthesis involving borothermic and aluminothermic reduction of Cr2O3. Ceram Int 38:5691–5697

    Article  CAS  Google Scholar 

  44. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (eds) (1996) Binary alloy phase diagrams. ASM International, Materials Park, OH, USA

    Google Scholar 

  45. Sonber JK, Murthy TSRC, Subramanian C, Kumar S, Fotedar RK, Suri AK (2009) Investigation on synthesis, pressureless sintering and hot pressing of chromium diboride. Int J Refract Met Hard Mater 27:912–918

    Google Scholar 

  46. Iizumi K, Sekiya C, Okada S, Kudou K, Shishido T (2006) Mechanochemically assisted preparation of NbB2 powder. J Eur Ceram Soc 26:635–638

    Article  CAS  Google Scholar 

  47. Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1994) Borohydride reduction of nickel and copper ions in aqueous and nonaqueous media. Controllable chemistry leading to nanoscale metal and metal boride particles. Langmuir 10:4726—4730

    Google Scholar 

  48. Takahashi T, Itoh H (1980) Ultrasonic chemical vapor deposition of TiB2 thick films. J Crystal Growth 49:445–450

    Article  CAS  Google Scholar 

  49. Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89

    Article  CAS  Google Scholar 

  50. Brewer JR, Jacobberger RM, Diercks DR, Cheung CL (2011) Rare earth hexaboride nanowires: General synthetic design and analysis using atom probe tomography. Chem Mater 23:2606–2610

    Article  CAS  Google Scholar 

  51. Kuznetsov GI, Sokolovsky EA (1997) Dependence of effective work function for LaB6 on surface conditions. Phys Scr T 71:130–133

    Article  Google Scholar 

  52. Jensen JA, Gozum JE, Pollina DM, Girolami GS (1988) Titanium, zirconium and hafnium tetrahydroborates as “Tailored” CVD precursors for metal diboride thin films. J Am Chem Soc 110:1643

    Article  CAS  Google Scholar 

  53. Jayaraman S, Yang Y, Kim DY, Girolami GS, Abelson JR (2005) Hafnium diboride thin films by chemical vapor deposition from a single source precursor. J Vac Sci Technol A 23:1619

    Article  CAS  Google Scholar 

  54. Ye W, Martin PAP, Kumar N, Daly SR, Rockett AA, Abelson JR, Girolami GS, Lyding JW (2010) Direct writing of sub-5 nm hafnium diboride metallic nanostructures. ACS Nano 4:6818

    Article  CAS  Google Scholar 

  55. Sano N, Kawanami O, Tamon H (2011) Synthesis of single and multi unit-wall nanotubes by arc plasma in inert liquid via self-curling mechanism. J Appl Phys 109:034302

    Google Scholar 

  56. Sano N, Ikeyama Y, Tamon H (2012) Hydrothermal synthesis of magnesium boride nanotubes. Mater Lett 85:106–108

    Article  CAS  Google Scholar 

  57. Hoerkstra HR, Katz JJ (1949) The preparation and properties of the group IV-B metal borides. J Am Chem Soc 71:2488–2492

    Article  Google Scholar 

  58. Wayda AL, Schneemeyer LF, Opila RL (1988) Low-temperature deposition of zirconium and hafnium boride films by thermal decomposition of the metal borohydrides (M[BH4]4). Appl Phys Lett 53:361

    Article  CAS  Google Scholar 

  59. Yang Y, Jayaraman S, Kim DY, Girolami GS, Abelson JR (2006) CVD growth kinetics of HfB2 thin films from the single-source precursor Hf(BH4)4. Chem Mater 18:5088–5096

    Google Scholar 

  60. Kim DY, Yang Y, Abelson JR, Girolami GS (2007) Volatile magnesium octahydrotriborate complexes as potential CVD precursors to MgB2. synthesis and characterization of Mg(B3H8)2 and its Etherates. Inorg Chem 46:9060−9066

    Google Scholar 

  61. Glass JA Jr, Kher SS, Spencer JT (1992) Chemical vapor deposition precursor chemistry. 2. Formation of pure aluminum, alumina, and aluminum boride thin films from boron-containing precursor compounds by chemical vapor deposition. Chem Mater 4:530–538

    Google Scholar 

  62. Amini MM, Fehlner TP (1990) Metallaboranes as molecular precursors to thin metal-boride films. Conversion of HFe3(CO)9BH4 to amorphous Fe75B25. Chem Mater 2:432–438

    Google Scholar 

  63. Jun C-S, Fehlner TP (1992) Binary thin films from molecular precursors. Role of precursor structure in the formation of amorphous and crystalline FeB. Chem Mater 4:440–446

    Google Scholar 

  64. Goedde DM, Girolami GS (2004) A new class of CVD precursors to metal borides: Cr(B3H8)2 and related octahydrotriborate complexes. J Am Chem Soc 126:12230–12231

    Google Scholar 

  65. Sung J, Goedde DM, Girolami GS, Abelson JR (2002) Remote-plasma chemical vapor deposition of conformal films at low temperature: a promising diffusion barrier for ultralarge scale integrated electronics. J Appl Phys 91:3904

    Article  CAS  Google Scholar 

  66. Yang Y, Jayaraman S, Kim DY, Girolami GS, Abelson JR (2006) Crystalline texture in hafnium diboride thin films grown by chemical vapor deposition. J Cryst Growth 294:389–395

    Article  CAS  Google Scholar 

  67. Ningthoujam RS, Vatsa RK, Prajapat CL, Yashwant G, Ravikumar G, Nataraju V (2010) Interaction between amorphous ferromagnetic Co–Fe–B particles in conducting silver matrix prepared by chemical reduction route. J Alloys Compd 492:L40–L43

    Article  CAS  Google Scholar 

  68. Ababei G, Gaburici M, Budeanu L-C, Grigoras M, Porcescu M, Lupuand N, Chiriac H (2018) Influence of the chemically synthesis conditions on the microstructure and magnetic properties of the Co-Fe-B nanoparticles. J Magn Magn Mater 451:565–571

    Google Scholar 

  69. Nagy JB, Gourgue A, Derouane EG (1983) Preparation of monodispersed nickel boride catalysts using revised micellar systems. In: Poncelet G, Grange P, Jacob PA (eds) Preparation of catalyst III © 1983 Elsevier Science Publishers B.V., Amsterdam—Printed in The Netherlands

    Google Scholar 

  70. Legrand J, Taleb A, Gota S, Guittet M-J, Petit C (2002) Synthesis and XPS characterization of nickel boride nanoparticles. Langmuir 18:4131–4137

    Article  CAS  Google Scholar 

  71. Schmid G, Schops E, Malm J-O, Bovin J-O (1994) Ligand-stabilized nickel and palladium boride colloids. Z Anorg Allg Chem 620:1170–1174

    Google Scholar 

  72. Gouget G, Beaunier P, Portehault D, Sanchez C (2016) New route toward nanosized crystalline metal borides with tuneable stoichiometry and variable morphologies. Faraday Discuss 191:511

    Article  CAS  Google Scholar 

  73. Hamayun MA, Abramchuk M, Alnasir H, Khan M, Pak C, Lenhert S, Ghazanfari L, Shatruk M, Manzoor S (2018) Magnetic and magnetothermal studies of iron boride (FeB) nanoparticles. J Magn Magn Mater 451:407–413

    Article  CAS  Google Scholar 

  74. Ali AO, Al-Masoudi, Soliyman R (2017) Nano-metal borides of cobalt, nickel and copper. J Nanomed Nanotechnol 8:1000477

    Google Scholar 

  75. Baris M, Simesek T, Akkurt A (2016) Mechanochemical synthesis and characterization of pure Co2B nanocrystals. Bull Mater Sci 39:1119–1126

    Article  CAS  Google Scholar 

  76. Rinaldi A, Correa-Duarte MA, Salgueirino-Maceira V, Licoccia S, Traversa E, Dávila-Ibáńez AB, Peralta P, Sieradzki K (2010) Elastic properties of hard cobalt boride composite nanoparticles. Acta Mater 58:6474–6486

    Article  CAS  Google Scholar 

  77. Saiyasombat C, Petchsang N, Tangand IM, Hodak JH (2008) Preparation of iron boride–silicacore–shell nanoparticles with soft ferromagnetic properties. Nanotechnology 19:085705 (7pp)

    Google Scholar 

  78. Cheng Y, Tanaka M, Watanabe T, Choi SY, Shin MS, Lee KH (2014) Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst. J Phys Conf Ser 518:012026

    Google Scholar 

  79. Choi S, Matsuo J, Cheng Y, Watanabe T (2013) Preparation of boron-rich aluminum boride nanoparticles by RF thermal plasma. J Nanopart Res 15:1820

    Article  Google Scholar 

  80. Ibe TWT, Abe Y, Ishii Y, Adachi K (2004) Nucleation mechanism of boride nanoparticles in induction thermal plasmas. Trans Mater Res Soc Jpn 29:3407

    Google Scholar 

  81. Portehault D, Devi S, Beaunier P, Gervais C, Giordano C, Sanchez C, Antonietti M (2011) A general solution route toward metal boride nanocrystals. Angew Chem Int Ed 50:3262–3265

    Article  CAS  Google Scholar 

  82. Khoshsima S, Altıntaş Z, Somer M, Balcı Ö (2018) Novel synthesis of cobalt based binary boride nanoparticles by using metal chloride powder blends. In: 19th international metallurgy & materials congress (IMMC 2018). pp 563–566

    Google Scholar 

  83. Zhdanova OV, Lyakhova MB, Pastushenkov YG (2013) Magnetic properties and domain structure of FeB single crystals. Met Sci Heat Treat 55:68–72

    Article  CAS  Google Scholar 

  84. Sani E, Meucci M, Mercatelli L, Jafrancesco D, Sans J-L, Silvestroni L, Sciti D (2014) Optical properties of boride ultrahigh-temperature ceramics for solar thermal absorbers. J Photonics Energy 4:045599

    Google Scholar 

  85. Kanomata T, Ise Y, Kumagai N, Haga A, Kamishimis K, Goto T, Kimura HM, Yoshida H, Kaneko T, Inoue A (1997) Magnetovolume effect of Co2B. J Alloys Compd 259:L1–L4

    Article  CAS  Google Scholar 

  86. Samsonov GV, Kovenskaya BA (1977) The electronic structure of boron compounds in boron and refractory borides. In: Matkovich VI. Springer, Berlin

    Google Scholar 

  87. Perras FA, Bryce DL (2014) Boron–boron J coupling constants are unique probes of electronic structure: a solid-state NMR and molecular orbital study. Chem Sci 5:2428

    Article  CAS  Google Scholar 

  88. Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF, III, Schleyer PVR, Robinson GH (2007) A stable neutral diborene containing a B=B double bond. J Am Chem Soc 129:12412–12413

    Google Scholar 

  89. Bohnke J, Braunschweig H, Constantinidis P, Dellermann T, Ewing WC, Fischer I, Hammond K, Hupp F, Mies J, Schmitt H-C, Vargas A (2015) Experimental assessment of the strengths of B−B triple bonds. J Am Chem Soc 137:1766–1769

    Article  Google Scholar 

  90. Joseph J, Gimarc BM, Zhao M (1993) Correlations between bond order and bond length in the electron-deficient closo-boranes. Polyhedron 12:2841–2848

    Article  CAS  Google Scholar 

  91. Tian H, Zhang C, Zhao J, Dong C, Wen B, Wang Q (2012) First-principle study of the structural, electronic, and magnetic properties of amorphous Fe–B alloys. Phys B 407:250–257

    Article  CAS  Google Scholar 

  92. Burdett JM, Canadell E, Miller GD (1986) Electronic structure of transition metal borides with the A1B2 structure. J Am Chem Soc 108:6561–6568

    Article  CAS  Google Scholar 

  93. Tzelia D, Mavridis A (2008) Electronic structure and bonding of the 3d transition metal borides, MB, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all electron ab initio calculations. J Chem Phys 128:034309

    Google Scholar 

  94. Gasparov VA, Kulakov MP, Sidorov NS, Zverkova II, Filipov VB, Lyashenko AB, Paderno YB (2004) On electron transport in ZrB12, ZrB2, and MgB2 in normal state. JETP Lett 80:376–380

    Article  Google Scholar 

  95. Shein IR, Ivanovskii AL (2001) The band structure of hexagonal diborides ZrB2, VB2, NbB2 and TaB2 in comparison with the superconducting MgB2. arXiv:cond-mat/0109445v2 [cond-mat.supr-con] 26 Sep 2001

  96. Souma S, Komatsu H, Takahashi T, Kaji R, Sasaki T, Yokoo Y, Akimitsu J (2003) Electronic band structure and fermi surface of CaB6 studied by angle-resolved photoemission spectroscopy. Phys Rev Lett 90:027202

    Google Scholar 

  97. Young DP, Hall D, Torelli ME, Fisk Z, Sarrao JL, Thompson JD, Ott H-R, Oseroff SB, Goodrichk RG, Zysler R (1999) High-temperature weak ferromagnetism in a low-density free-electron gas. Nature 397:412

    Article  CAS  Google Scholar 

  98. Shirakawa K, Kaneko T, Yoshida H, Masumoto T (1986) Electrical resistivity of amorphous and crystalline (Co1-xMnx)2B alloys. J Magn Magn Mater 54–57:267–268

    Article  Google Scholar 

  99. Sani E, Mercatelli L, Meucci M, Silvestroni L, Balbo A, Sciti D (2016) Process and composition dependence of optical properties of zirconium, hafnium and tantalum borides for solar receiver applications. Sol Energy Mater Sol Cells 155:368–377

    Article  CAS  Google Scholar 

  100. Licheri R, Musa C, Locci AM, Montinaro S, Orrù R, Cao G, Silvestroni L, Sciti D, Azzali N, Mercatelli L, Sani E (2019) Ultra-high temperature porous graded ceramics for solar energy applications. J Eur Ceram Soc 39:72–78

    Article  CAS  Google Scholar 

  101. Schmechel R, Werheit H, Kampen TU, Mönch W (2004) Photoluminescence of boroncarbide. J Solid State Chem 177:566–568

    Article  CAS  Google Scholar 

  102. Silly MG, Jaffrennou P, Barjon J, Lauret J-S, Ducastelle F, Loiseau A, Obraztsova E, Attal-Tretout B, Rosencher E (2007) Luminescence properties of hexagonal boron nitride: cathode luminescence and photoluminescence spectroscopy measurements. Phys Rev B 75:085205

    Google Scholar 

  103. Prathap KJ, Wu Q, Olsson RT, Diner P (2017) Catalytic reductions and tandem reactions of nitro compounds using in situ prepared nickel boride catalyst in nanocellulose solution. Org Lett 19:4746–4749

    Article  CAS  Google Scholar 

  104. Nsanzimana JMV, Reddu V, Peng Y, Huang Z, Wang C, Wang X (2018) Ultrathin amorphous iron-nickel boride nanosheets for highly efficient electrocatalytic oxygen production. Chem Eur J 24:18502–18511

    Article  CAS  Google Scholar 

  105. Vandenberg JH, Matthias BT, Corenzwit E, Barz H (1975) Superconductivity of some binary and ternary transition-metal borides. Mat Res Bull 10:889–894

    Article  CAS  Google Scholar 

  106. Xie W, Luo H, Baroudi K, Krizan JW, Phelan BF, Cava RJ (2015) Fragment-based design of NbRuB as a new metal-rich boride superconductor. Chem Mater 27:1149–1152

    Article  CAS  Google Scholar 

  107. Carnicom EM, Strychalska-Nowak J, Wiśniewski J, Kaczorowski D, Xie W, Klimczuk T, Cava RJ (2018) Superconductivity in the superhard borideWB4.2. Supercond. Sci Technol 31:115005

    Google Scholar 

  108. Jiang J, Wang Y, Zhong Q, Zhou Q, Zhang L (2011) Preparation of Fe2B boride coating on low-carbon steel surfaces and its evaluation of hardness and corrosion resistance. Surf Coat Technol 206:473–478

    Article  CAS  Google Scholar 

  109. Andoh Y, Nishiyama S, Sakai S, Ogata K (1993) Wear resistance of boron nitride coated metal. Nucl Inst Methods Phys Res B 80(81):225–228

    Article  Google Scholar 

  110. Jiang C, Pei Z, Liu Y, Xiao J, Gong J, Sun C (2013) Preparation and characterization of superhard AlB2-type WB2 nanocomposite coatings. Phys Status Solidi A 210:1221–1227

    Google Scholar 

  111. Williams WS (1998) The thermal conductivity of metallic ceramics. J Miner Met Mater Soc 50:62–66

    Article  CAS  Google Scholar 

  112. Bellosi A, Monteverde F (2006) Ultra high temperature ceramics: Microstructure control and properties improvement related to materials design and processing procedures, thermal protection systems and hot structures. In: Fletcher K (ed) Proceedings of the 5th European workshop held 17–19 May, 2006 at ESTEC, ESA SP-631. European Space Agency, 2006. Published on CDROM, id.46, Noordwijk, The Netherlands

    Google Scholar 

  113. Lozynskyy OZ, Herrmann M, Ragulya A, Andrzejxzuk M, Polotal A (2012) Structure and mechanical properties of spark plasma sintered TiN-based nanocomposites. Arch Metall Mater 57:853

    Google Scholar 

  114. Grigor’ev ON, Prilutskii ÉV, Trunova EG (2002) Structure and properties of ceramics based on tungsten and titanium borides and boron carbide. Powder Metall Met Ceram 41:142–146

    Article  CAS  Google Scholar 

  115. Zoli L, Galizia P, Silvestroni L, Sciti D (2018) Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride. J Am Ceram Soc 101:2627–2637

    Article  CAS  Google Scholar 

  116. Li Y, Tevaarwerk E, Chang RPH (2006) Ferromagnetic iron boride (Fe3B) nanowires. Chem Mater 18:2552–2557

    Article  CAS  Google Scholar 

  117. Scheifers JP, Zhang Y, Fokwa BPT (2017) Boron: enabling exciting metal-rich structures and magnetic properties. Acc Chem Res 50:2317–2325

    Article  CAS  Google Scholar 

  118. Fokwa BPT (2010) Transition-metal-rich borides—Fascinating crystal structures and magnetic properties. Eur J Inorg Chem 3075–3092

    Google Scholar 

  119. Williams MD, Jackson T, Kippenhan DO, Leung KN, West MK, Crawford CK Lanthanum hexaboride (LaB6) resistivity measurement. Appl Phys Lett 50:1844

    Google Scholar 

  120. Kerley EL, Hanson CD, Russell DH (1990) Lanthanum hexaboride electron emitter for electron impact and electron-induced dissociation Fourier transform ion cyclotron resonance spectrometry. Anal Chem 62:409–411

    Article  CAS  Google Scholar 

  121. Yamauchi H, Takagi K, Yuito I, Kawabe U (1976) Work function of LaB6. Appl Phys Lett 29:638

    Article  CAS  Google Scholar 

  122. Tantau LJ, Islam MT, Payne AT, Tran CQ, Cheah MH, Best SP, Chantler CT (2014) High accuracy energy determination and calibration of synchrotron radiation by powder diffract ion. Radiat Phys Chem 95:73–77

    Article  CAS  Google Scholar 

  123. Kim JS, Kim B, Kim H, Kang K (2018) Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv Energy Mater 8:1702774

    Article  Google Scholar 

  124. Nsanzimana JMV, Dangol R, Reddu V, Duo S, Peng Y, Dinh KN, Huang Z, Yan Q, Wang X (2019) Facile synthesis of amorphous ternary metal borides—reduced graphene oxide hybrid with superior oxygen evolution activity. ACS Appl Mater Interfaces 11:846–855

    Article  CAS  Google Scholar 

  125. Cao X, Wang X, Cui L, Jiang D, Zheng Y, Liu J (2017) Strongly coupled nickel boride/graphene hybrid as a novel electrode material for supercapacitors. Chem Eng J 327:1085–1092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghumani S. Ningthoujam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, R., Ningthoujam, R.S. (2021). Synthesis, Characterization, Physical Properties and Applications of Metal Borides. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_8

Download citation

Publish with us

Policies and ethics