Skip to main content

Synthesis Strategies for Si-Based Advanced Materials and Their Applications

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Silicon compounds are very important owing to their stability, non-toxicity, and high natural abundance of silica in earth crust. These materials have been studied for more than a century, and a vast literature on their synthesis and application is available. These are utilized in various forms in organometallics, polymers, material science, and microelectronics, and have immense potential for their application in organic and hybrid electronic devices. Thus, a comprehensive review on synthesis, processing, and potential applications of silicon-based materials was a need of the time. In this chapter, the synthesis of silane, methods of extracting elemental silicon, and their use in the growth of single crystals are discussed. In addition, synthesis strategies of various silicon compounds which include organosilane, silicone, polysilane, and silicene are described and their applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrov BFMAD, Ponomarenko VA, Chernyshev EA (1964) Synthesis of organosilicon monomers. Consultants Bureau, New York

    Google Scholar 

  2. Semenov VV (2011) Preparation, properties and applications of oligomeric and polymeric organosilanes. Russ Chem Rev 80(4):313–339

    Article  CAS  Google Scholar 

  3. Brook MA (1999) Silicon in organic, organometallic, and polymer chemistry. Wiley

    Google Scholar 

  4. O'Mara WC, Herring RB, Hunt LP (1990) Handbook of semiconductor silicon technology. Noyes Publications

    Google Scholar 

  5. Plueddemann EP (2013) Silane coupling agents. Springer, US

    Google Scholar 

  6. Moriguchi K, Utagawa S (2012) Silane: chemistry, applications and performance. Nova Publishers

    Google Scholar 

  7. Muzafarov AM (2010) Silicon polymers. Springer, Berlin Heidelberg

    Google Scholar 

  8. Robeyns C, Picard L, Ganachaud F (2018) Synthesis, characterization and modification of silicone resins: an “Augmented Review.” Prog Org Coat 125:287–315

    Article  CAS  Google Scholar 

  9. Su TA, Li H, Klausen RS, Kim NT, Neupane M, Leighton JL, Steigerwald ML, Venkataraman L, Nuckolls C (2017) Silane and Germane Molecular Electronics. Acc Chem Res 50(4):1088–1095

    Article  CAS  Google Scholar 

  10. Lee B, Chen Y, Duerr F, Mastrogiovanni D, Garfunkel E, Andrei EY, Podzorov V (2010) Modification of electronic properties of graphene with self-assembled monolayers. Nano Lett 10(7):2427–2432

    Article  CAS  Google Scholar 

  11. Puniredd SR, Jayaraman S, Yeong SH, Troadec C, Srinivasan MP (2013) Stable organic monolayers on oxide-free silicon/germanium in a supercritical medium: a new route to molecular electronics. J Phys Chem Lett 4(9):1397–1403

    Article  CAS  Google Scholar 

  12. Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D (2006) Self assembled monolayers on silicon for molecular electronics. Anal Chim Acta 568(1):84–108

    Article  CAS  Google Scholar 

  13. Rakshit T, Liang G-C, Ghosh AW, Datta S (2004) Silicon-based molecular electronics. Nano Lett 4(10):1803–1807

    Article  CAS  Google Scholar 

  14. Guisinger NP, Greene ME, Basu R, Baluch AS, Hersam MC (2004) Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett 4(1):55–59

    Article  CAS  Google Scholar 

  15. Okumoto H, Yatabe T, Richter A, Peng J, Shimomura M, Kaito A, Minami N (2003) A strong correlation between the hole mobility and silicon chain length in oligosilane self-organized thin films. Adv Mater 15(9):716–720

    Article  CAS  Google Scholar 

  16. Surampudi S, Yeh ML, Siegler MA, Hardigree JFM, Kasl TA, Katz HE, Klausen RS (2015) Increased carrier mobility in end-functionalized oligosilanes. Chem Sci 6(3):1905–1909

    Article  CAS  Google Scholar 

  17. Suzuki H, Meyer H, Simmerer J, Yang J, Haarer D (1993) Electroluminescent devices based on poly (methylphenylsilane). Adv Mater 5(10):743–746

    Article  CAS  Google Scholar 

  18. Yan Voon LCL, Guzmán-Verri GG (2014) Is silicene the next graphene?. MRS Bull 39(4):366–373

    Google Scholar 

  19. Molle A, Grazianetti C, Tao L, Taneja D, Alam MH, Akinwande D (2018) Silicene, silicene derivatives, and their device applications. Chem Soc Rev 47(16):6370–6387

    Article  CAS  Google Scholar 

  20. Li X-G, Xiao W-D (2016) Silane pyrolysis to silicon rod in a bell-jar reactor at high temperature and pressure: modeling and simulation. Ind Eng Chem Res 55(17):4887–4896

    Article  CAS  Google Scholar 

  21. Zhang P, Duan J, Chen G, Li J, Wang W (2018) Production of polycrystalline silicon from silane pyrolysis: a review of fines formation. Sol Energy 175:44–53

    Article  CAS  Google Scholar 

  22. Shimura F (2017) Single-crystal silicon: growth and properties. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer International Publishing, Cham, pp 1–1

    Google Scholar 

  23. Hoshikawa K, Huang X, Taishi T, Kajigaya T, Iino T (1999) Jpn J Appl Phys 38(Part 2, No. 12A):L1369–L1371

    Article  Google Scholar 

  24. Barker Jr TH (1986) Process for preparing chlorosilanes from silicon and hydrogen chloride using an oxygen promoter. Google Patents

    Google Scholar 

  25. Ingle WM, Darnell RD (1985) Oxidative purification of chlorosilane silicon source materials. J Electrochem Soc 132(5):1240–1243

    Google Scholar 

  26. Ingle WM, Peffley MS (1985) Kinetics of the hydrogenation of silicon tetrachloride. J Electrochem Soc 132(5):1236–1240

    Google Scholar 

  27. Alcántara-Avila JR, Sillas-Delgado HA, Segovia-Hernández JG, Gómez-Castro FI, Cervantes-Jauregui JA (2015) Optimization of a reactive distillation process with intermediate condensers for silane production. Comput Chem Eng 78:85–93

    Article  Google Scholar 

  28. Filtvedt WO, Holt A, Ramachandran PA, Melaaen MC (2012) Chemical vapor deposition of silicon from silane: review of growth mechanisms and modeling/scaleup of fluidized bed reactors. Sol Energy Mater Sol Cells 107:188–200

    Article  CAS  Google Scholar 

  29. Friedrich J, von Ammon W, Müller G (2015) 2 - Czochralski growth of silicon crystals. In: Rudolph P (ed) Handbook of crystal growth (Second Edition). Elsevier, Boston, pp 45–104

    Chapter  Google Scholar 

  30. Uecker R (2014) The historical development of the Czochralski method. J Cryst Growth 401:7–24

    Article  CAS  Google Scholar 

  31. West R, Barton TJ (1980) Organosilicon chemistry: part I. J Chem Educ 57(3):165

    Article  CAS  Google Scholar 

  32. Deschler U, Kleinschmit P, Panster P (1986) 3-chloropropyltrialkoxysilanes—key intermediates for the commercial production of organofunctionalized silanes and polysiloxanes. Angew Chem Int Ed Engl 25(3):236–252

    Article  Google Scholar 

  33. Sterman S, Marsden JG (1966) Silane coupling agents. Ind Eng Chem 58(3):33–37

    Article  CAS  Google Scholar 

  34. Shorr LM (1955) Method of preparing alkoxysilicon compounds. Google Patents

    Google Scholar 

  35. Speier JJL (1950) Chlorination of organosilicon compositions. Google Patents

    Google Scholar 

  36. Speier JL, Roth CA, Ryan JW (1971) Syntheses of (3-aminoalkyl) silicon compounds. J Org Chem 36(21):3120–3126

    Article  CAS  Google Scholar 

  37. Reichel S (1972) Process for preparing gamma-aminopropylalkoxy-silanes and gamma-aminopropylalkylalkoxysilanes. Google Patents

    Google Scholar 

  38. Sommer LH, Rockett J (1951) The polar effects of organosilicon substituents in aliphatic amines 1,2. J Am Chem Soc 73(11):5130–5134

    Article  CAS  Google Scholar 

  39. Plueddemann EP (1969) Alkoxyalkarylsilanes and condensates thereof. Google Patents

    Google Scholar 

  40. Kricheldorf HR (1996) Chemical modification of polymers and surfaces. In: Kricheldorf HR (ed) Silicon in polymer synthesis. Springer, Berlin Heidelberg, pp 404–457

    Chapter  Google Scholar 

  41. Zeng X, Xu G, Gao Y, An Y (2011) Surface wettability of (3-aminopropyl) triethoxysilane self-assembled monolayers. J Phys Chem B 115(3):450–454

    Article  CAS  Google Scholar 

  42. Siqueira Petri DF, Wenz G, Schunk P, Schimmel T (1999) An improved method for the assembly of amino-terminated monolayers on sio2 and the vapor deposition of gold layers. Langmuir 15(13):4520–4523

    Google Scholar 

  43. Omietanski G, Petty H (1974) Process for reacting weak acids with chloroalkyl substituted silicon compounds. Google Patents

    Google Scholar 

  44. Le Grow GE (1971) Method of preparing mercaptoalkyl alkoxy silanes. Google Patents

    Google Scholar 

  45. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819

    Article  Google Scholar 

  46. Plueddemann EP (1983) Silane adhesion promoters in coatings. Prog Org Coat 11(3):297–308

    Article  CAS  Google Scholar 

  47. Plueddemann EP (1983) Silane adhesion promoters for polymeric coatings. In: Mittal KL (ed) Adhesion aspects of polymeric coatings. Springer, US, Boston, MA, pp 363–377

    Chapter  Google Scholar 

  48. Child TF, van Ooij WJ (1999) Application of silane technology to prevent corrosion of metals and improve paint adhesion. Transactions of the IMF 77(2):64–70

    Article  CAS  Google Scholar 

  49. Klauk H (2006) Organic electronics: materials, manufacturing, and applications. Wiley

    Google Scholar 

  50. Wöll C (2009) Physical and chemical aspects of organic electronics: from fundamentals to functioning devices. Wiley

    Google Scholar 

  51. Lyshevski SE (2018) Nano and molecular electronics handbook, CRC Press

    Google Scholar 

  52. Aswal DK, Koiry SP, Jousselme B, Gupta SK, Palacin S, Yakhmi JV (2009) Hybrid molecule-on-silicon nanoelectronics: electrochemical processes for grafting and printing of monolayers. Phys E 41(3):325–344

    Article  CAS  Google Scholar 

  53. Chauhan AK, Aswal DK, Koiry SP, Gupta SK, Yakhmi JV, Sürgers C, Guerin D, Lenfant S, Vuillaume D (2008) Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics. Appl Phys A 90(3):581–589

    Article  CAS  Google Scholar 

  54. Koiry SP, Aswal DK, Saxena V, Padma N, Chauhan AK, Joshi N, Gupta SK, Yakhmi JV, Guerin D, Vuillaume D (2007) Electrochemical grafting of octyltrichlorosilane monolayer on Si. Appl Phys Lett 90(11):113118

    Google Scholar 

  55. Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X (2016) Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer. ACS Nano 10(8):7792–7798

    Article  CAS  Google Scholar 

  56. Kim J (2011) Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. In: Interfaces and Interphases in Analytical Chemistry. American Chemical Society, pp 141–165

    Google Scholar 

  57. Chauhan AK, Aswal DK, Koiry SP, Padma N, Saxena V, Gupta SK, Yakhmi JV (2008) Resistive memory effect in self‐assembled 3‐aminopropyltrimethoxysilane molecular multilayers. Phys Status Solidi A 205(2):373–377

    Article  CAS  Google Scholar 

  58. Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D (2005) A tunnel current in self-assembled monolayers of 3-Mercaptopropyltrimethoxysilane. Small 1(7):725–729

    Article  CAS  Google Scholar 

  59. Zhao J, Uosaki K (2003) Dielectric properties of organic monolayers directly bonded on silicon probed by current sensing atomic force microscope. Appl Phys Lett 83(10):2034–2036

    Article  CAS  Google Scholar 

  60. Diebold RM, Gordon MJ, Clarke DR (2014) Effect of silane coupling agent chemistry on electrical breakdown across hybrid organic–inorganic insulating films. ACS Appl Mater Interfaces 6(15):11932–11939

    Article  CAS  Google Scholar 

  61. Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26(9):1319–1335

    Article  CAS  Google Scholar 

  62. Lei Y, Wu B, Chan W-KE, Zhu F, Ong BS (2015) Engineering gate dielectric surface properties for enhanced polymer field-effect transistor performance. J Mater Chem C 3(47):12267–12272

    Article  CAS  Google Scholar 

  63. Liu D, Miao Q (2018) Recent progress in interface engineering of organic thin film transistors with self-assembled monolayers. Mater Chem Front 2(1):11–21

    Article  CAS  Google Scholar 

  64. Lei Y, Deng P, Lin M, Zheng X, Zhu F, Ong BS (2016) Enhancing crystalline structural orders of polymer semiconductors for efficient charge transport via polymer-matrix-mediated molecular self-assembly. Adv Mater 28(31):6687–6694

    Article  CAS  Google Scholar 

  65. Colas A (2005) Silicones: preparation, properties and performance. Dow corning, life sciences

    Google Scholar 

  66. Modjarrad K, Ebnesajjad S (2013) Handbook of polymer applications in medicine and medical devices. Elsevier Science

    Google Scholar 

  67. Kipping FS, Lloyd LL (1901) XLVII.—Organic derivatives of silicon. Triphenylsilicol and alkyloxysilicon chlorides. J Chem Soc Trans 79:449–459

    Google Scholar 

  68. Rochow EG, Gilliam WF (1941) Polymeric methyl silicon oxides1. J Am Chem Soc 63(3):798–800

    Article  CAS  Google Scholar 

  69. Rochow EG (1941) Methyl silicones and related products. US

    Google Scholar 

  70. Noll W (2012) Chemistry and technology of silicones. Elsevier Science

    Google Scholar 

  71. Jones RG, Ando W, Chojnowski J (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. Springer, Netherlands

    Google Scholar 

  72. Patnode W, Wilcock DF (1946) Methylpolysiloxanes1. J Am Chem Soc 68(3):358–363

    Article  CAS  Google Scholar 

  73. Lane TH, Burns SA (1996) Silica, silicon and silicones...Unraveling the mystery. Springer, Berlin, Heidelberg

    Google Scholar 

  74. Bokerman GN, Freeburne SK, Schuelke LM, VanKoevering DG (1991) Anhydrous hydrogen chloride evolving one-step process for producing siloxanes. US

    Google Scholar 

  75. Burger C, Kreuzer F-H (1996) Polysiloxanes and polymers containing siloxane groups. In: Kricheldorf HR (ed) Silicon in polymer synthesis. Springer, Berlin, Heidelberg, pp 113–222

    Chapter  Google Scholar 

  76. Panchenko BI, Gruber VN, Klebanskii AL (1969) Study of the hydrolytic polycondensation of dimethyldichlorosilane in concentrated hydrochloric acid. Polym Sci U.S.S.R. 11(2):496–501

    Google Scholar 

  77. Lambert JB, Kania L, Schulz Jr WJ (1993) Redistribution of cyclosiloxanes to favor formation of decamethylcyclopentasiloxane. J Polym Sci Part A: Polym Chem 31(7):1697–1700

    Google Scholar 

  78. Sandler SR, Karo W (eds) (1977) Chapter 4 - Silicone Resins (Polyorganosiloxanes or Silicones). In: Organic chemistry, Elsevier, pp 114–139

    Google Scholar 

  79. Cypryk M, Apeloig Y (2002) Mechanism of the acid-catalyzed Si−O bond cleavage in siloxanes and siloxanols. A theoretical study. Organometallics 21(11):2165–2175

    Article  CAS  Google Scholar 

  80. Wicht MBJCCDWGGRKJLLLSRSRFSJSJWD (2003) Silicones. In: Encyclopedia of polymer science and technology, vol. 11, pp. 765–776

    Google Scholar 

  81. Andriot M, Chao S, Colas A, Cray S, DeBuyl F, DeGroot J, Dupont A, Easton T, Garaud J, Gerlach E (2007) Silicones in industrial applications. Inorg Polym 61–161

    Google Scholar 

  82. Cornwell PA (2018) A review of shampoo surfactant technology: consumer benefits, raw materials and recent developments. Int J Cosmet Sci 40(1):16–30

    Article  CAS  Google Scholar 

  83. L'hostis J, Renauld F, Sawicki G (2003) Silicone foam control agent. US Patent

    Google Scholar 

  84. Sawicki GC (1988) Silicone polymers as foam control agents. J Am Oil Chem’ Soc 65(6):1013–1016

    Article  CAS  Google Scholar 

  85. Waser R, Dittmann R, Staikov G, Szot K (2009) Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv Mater 21(25–26):2632–2663

    Article  CAS  Google Scholar 

  86. Sugiyama I, Shimizu R, Suzuki T, Yamamoto K, Kawasoko H, Shiraki S, Hitosugi T (2017) A nonvolatile memory device with very low power consumption based on the switching of a standard electrode potential. APL Mater. 5(4):046105

    Google Scholar 

  87. Valov I, Waser R, Jameson JR, Kozicki MN (2011) Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22(25):254003

    Google Scholar 

  88. Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F, Waser R (2013) Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat Commun 4:1771

    Article  CAS  Google Scholar 

  89. Koiry SP, Jha P, Putta V, Saxena V, Chauhan AK, Aswal DK, Gupta SK (2015) Memory and ferroelectric photovoltaic effects arising from quasi-reversible oxidation and reduction in porphyrin entrapped aminopropyl-silicate films. Org Electron 25:143–150

    Article  CAS  Google Scholar 

  90. Chandra S, Sekhon SS, Srivastava R, Arora N (2002) Proton-conducting gel electrolyte. Solid State Ion 154–155:609–619

    Article  Google Scholar 

  91. Valov I (2014) Redox-Based Resistive Switching Memories (ReRAMs): electrochemical systems at the atomic scale. Chem Electro Chem 1(1):26–36

    Google Scholar 

  92. Kamino BA, Bender TP (2013) The use of siloxanes, silsesquioxanes, and silicones in organic semiconducting materials. Chem Soc Rev 42(12):5119–5130

    Article  CAS  Google Scholar 

  93. Mehwish N, Dou X, Zhao Y, Feng C-L (2019) Supramolecular fluorescent hydrogelators as bio-imaging probes. Mater Horizons 6(1):14–44

    Article  CAS  Google Scholar 

  94. Kasprzyk W, Krzywda P, Bednarz S, Bogdał D (2015) Fluorescent citric acid-modified silicone materials. RSC Adv 5(110):90473–90477

    Article  CAS  Google Scholar 

  95. Fs K (1923) J Chem Soc 125:2291

    Google Scholar 

  96. Kipping FS, Sands JE (1921) XCIII.—Organic derivatives of silicon. Part XXV. Saturated and unsaturated silicohydrocarbons, Si4Ph8. J Chem Soc Trans 119(0):830–847

    Google Scholar 

  97. Kipping FS (1924) CCCVIII.—Organic derivatives of silicon. Part XXX. Complex silicohydrocarbons [SiPh2]n. J Chem Soc Trans 125(0):2291–2297

    Google Scholar 

  98. Burkhard CA, J Am Chem Soc 71:963

    Google Scholar 

  99. West R, David LD, Djurovich PI, Stearley KL, Srinivasan KSV, Yu H (1981) Phenylmethylpolysilanes: formable silane copolymers with potential semiconducting properties. J Am Chem Soc 103(24):7352–7354

    Article  CAS  Google Scholar 

  100. Yajima SH, Hayashi Y, Iimura MM (1978) J Mater Sci 13

    Google Scholar 

  101. West R (1986) The polysilane high polymers. J Organomet Chem 300(1):327–346

    Article  CAS  Google Scholar 

  102. Naito M, Fujiki M (2008) Polysilanes on surfaces. Soft Matter 4(2):211–223

    Article  CAS  Google Scholar 

  103. Semenov VV (2011) Preparation, properties and applications of oligomeric and polymeric organosilanes. Russ Chem Rev 80

    Google Scholar 

  104. Miller RD, Michl J (1989) Polysilane high polymers. Chem Rev 89(6):1359–1410

    Article  CAS  Google Scholar 

  105. Jovanovic M, Michl J (2018) Understanding the Effect of Conformation on Hole Delocalization in Poly(dimethylsilane). J Am Chem Soc 140(36):11158–11160

    Article  CAS  Google Scholar 

  106. Jones RG, Holder SJ (2006) High-yield controlled syntheses of polysilanes by the Wurtz-type reductive coupling reaction. Polym Int 55(7):711–718

    Article  CAS  Google Scholar 

  107. Jones RG, Ando W, Chojnowski J (eds) (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. Springer Netherlands, pp 365–375

    Google Scholar 

  108. Jones RG, Budnik U, Holder S, Wong WKC (1996) Reappraisal of the origins of the polymodal molecular mass distributions in the formation of poly(methylphenylsilylene) by the Wurtz reductive-coupling reaction, vol 29

    Google Scholar 

  109. Jones RG, Benfield RE, Cragg RH, Swain AC, Webb SJ (1993) Evaluation of the synthesis of polysilanes by the reductive-coupling of dihaloorganosilanes. Macromolecules 26(18):4878–4887

    Article  CAS  Google Scholar 

  110. Robert RHC, Benfield E, Jones RG, Swain AC (1992) Alternative reducing agents for the Wurtz synthesis of polysilanes. J Chem Soc Chem Commun 1022–1024:1

    Google Scholar 

  111. Gray GM, Corey JY (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. In (eds) Jones RG, Ando W, Chojnowski J. Springer, Netherlands, pp 402–416

    Google Scholar 

  112. Sakurai H, Yoshida S (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. In: Jones RG, Ando W, Chojnowski J (eds) Springer,  Netherlands, pp 375–399

    Google Scholar 

  113. Kabeta K, Wakamatsu S, Imai T (1996) Preparation of substituted network polysilanes by a disproportionation reaction of alkoxydisilanes in the presence of alkoxysilanes. J Polym Sci Part A: Polym Chem 34(14):2991–2998

    Google Scholar 

  114. Roark DN, Peddle GJD (1972) Reactions of 7,8-disilabicyclo[2.2.2]octa-2,5-dienes. Evidence for the transient existence of a disilene. J Am Chem Soc 94(16):5837–5841

    Article  CAS  Google Scholar 

  115. Kashimura S, Ishifune M, Yamashita N, Bu H-B, Takebayashi M, Kitajima S, Yoshiwara D, Kataoka Y, Nishida R, Kawasaki S-I, Murase H, Shono T (1999) Electroreductive synthesis of polysilanes, polygermanes, and related polymers with magnesium electrodes1. J Org Chem 64(18):6615–6621

    Article  CAS  Google Scholar 

  116. Ishifune M, Kashimura S, Kogai Y, Fukuhara Y, Kato T, Bu H-B, Yamashita N, Murai Y, Murase H, Nishida R (2000) Electroreductive synthesis of oligosilanes and polysilanes with ordered sequences. J Organomet Chem 611(1):26–31

    Article  CAS  Google Scholar 

  117. Nakagawa J, Oku T, Suzuki A, Akiyama T, Tokumitsu K, Yamada M, Nakamura M (2012) Fabrication and characterization of polysilane/C60thin film solar cells. J Phys Conf Ser 352:012019

    Google Scholar 

  118. Iwase M, Oku T, Suzuki A, Akiyama T, Tokumitsu K, Yamada M, Nakamura M (2012) Fabrication and characterization of poly[diphenylsilane]-based solar cells. J Phys Conf Ser 352:012018

    Google Scholar 

  119. Oku T, Nakagawa J, Iwase M, Kawashima A, Yoshida K, Suzuki A, Akiyama T, Tokumitsu K, Yamada M, Nakamura, M (2013) Microstructures and photovoltaic properties of polysilane-based solar cells. Jpn J Appl Phys 52(4S):04CR07

    Google Scholar 

  120. Acharya A, Seki S, Saeki A, Tagawa S (2006) Photoconductivity in fullerene-doped polysilane thin films. 156:293–297

    Google Scholar 

  121. Lew Yan Voon L, Guzmán-Verri GG (2014) Is silicene the next graphene?. 39

    Google Scholar 

  122. Kara A, Enriquez H, Seitsonen AP, Lew Yan Voon LC, Vizzini S, Aufray B, Oughaddou H (2012) A review on silicene — new candidate for electronics. Surf Sci Rep 67(1):1–18

    Google Scholar 

  123. Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Lay GL (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96(18):183102

    Google Scholar 

  124. Bernard Aufray BE, Jamgotchian H, Hichem Maradj J-YHAJ-PB (2016) Silicene: structure, properties and applications. In: Spencer M, Morishita T (eds) Springer International Publishing, Switzerland, pp 183–185

    Google Scholar 

  125. Paola De Padova BO, Quaresima C, Ottaviani AC. Silicene: structure, properties and applications. In: Spencer M, Morishita T, Springer International Publishing, pp 143–146

    Google Scholar 

  126. Houssa M, Dimoulas A, Molle A (2015) Silicene: a review of recent experimental and theoretical investigations. J Phys Condens Matter 27(25):253002

    Google Scholar 

  127. Nakano H, Ohashi M (2016) Silicene: structure, properties and applications. In: Spencer M,  Morishita T (eds) Springer International Publishing, Switzerland

    Google Scholar 

  128. Hu P, Chen L, Lu J-E, Lee H-W, Chen S (2018) Silicene quantum dots: synthesis, spectroscopy, and electrochemical studies. Langmuir 34(8):2834–2840

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koiry, S.P., Chauhan, A.K. (2021). Synthesis Strategies for Si-Based Advanced Materials and Their Applications. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_17

Download citation

Publish with us

Policies and ethics