Skip to main content

Application of Cold Plasma in Animal Meat and Poultry

  • Chapter
  • First Online:
Applications of Cold Plasma in Food Safety
  • 852 Accesses

Abstract

Microbial contamination is one of the most important factors that affects the safety and shelf life of meat and meat products. Effective decontamination is paramount to consumers for the safety. Cold plasma as an effective and rapid non-thermal decontamination treatment technology, the rapid microbial inactivation achieved in the food industry has aroused the researcher’s interest. This review mainly summarizes the published researches on the application of cold plasma in fresh animal and poultry meat and meat products. The bactericidal effect of cold plasma on microorganisms and the impact on product quality for animal, poultry, and eggs were discussed, respectively. Application of cold plasma during meat processing was also discussed in this review. Compared with traditional thermal technologies, cold plasma has unique advantages, such as non-thermal, design versatility, economical, and friendly to environment. Cold plasma technology is expected to be widely used in the meat industry in the near future, and further study is still needed to get its potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertos I, Martín-Diana A, Cullen P et al (2017) Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innov Food Sci Emerg Technol 44:117–122

    Article  CAS  Google Scholar 

  • Bae SC, Park SY, Choe W et al (2015) Inactivation of murine norovirus-1 and hepatitis A virus on fresh meats by atmospheric pressure plasma jets. Food Res Int 76:342–347

    Article  CAS  PubMed  Google Scholar 

  • Bauer A, Ni Y, Bauer S et al (2017) The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci 128:77–87

    Article  CAS  PubMed  Google Scholar 

  • Beggs CB (2002) A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms. Photochem Photobiol Sci 1(6):431–437

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Aguirre D, Wemlinger E, Pedrow P et al (2013) Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 34(1):149–157

    Article  Google Scholar 

  • Bußler S, Steins V, Ehlbeck J et al (2015) Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum ‘Salamanca’. J Food Eng 167:166–174

    Article  Google Scholar 

  • Choi S, Puligundla P, Mok C (2016) Corona discharge plasma jet for inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Ann Microbiol 66(2):685–694

    Article  CAS  Google Scholar 

  • Cui H, Wu J, Li C et al (2017) Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist. J Food Saf 37(2):e12316

    Article  Google Scholar 

  • Cui H, Bai M, Lin L (2018) Plasma-treated poly (ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr Polym 179:360–369

    Article  CAS  PubMed  Google Scholar 

  • Damodaran S, Paraf A (eds) (1997) Food proteins and their applications. Marcel Dekker, New York

    Google Scholar 

  • Deng XT, Shi J, Che H et al (2007) Protein destruction by atmospheric pressure glow discharges. Appl Phys Lett 90(1):013903

    Article  Google Scholar 

  • Dirks BP, Dobrynin D, Fridman G et al (2012) Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. J Food Prot 75(1):22–28

    Article  PubMed  Google Scholar 

  • Estévez M (2011) Protein carbonyls in meat systems: a review. Meat Sci 89(3):259–279

    Article  PubMed  Google Scholar 

  • Fernandez A, Noriega E, Thompson A (2013) Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol 33(1):24–29

    Article  CAS  PubMed  Google Scholar 

  • Foster J, Sommers BS, Gucker SN et al (2012) Perspectives on the interaction of plasmas with liquid water for water purification. IEEE Trans Plasma Sci 40(5):1311–1323

    Article  CAS  Google Scholar 

  • Fröhling A, Durek J, Schnabel U et al (2012) Indirect plasma treatment of fresh pork: decontamination efficiency and effects on quality attributes. Innov Food Sci Emerg Technol 16:381–390

    Article  Google Scholar 

  • Fuentes V, Ventanas J, Morcuende D et al (2010) Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure. Meat Sci 85(3):506–514

    Article  CAS  PubMed  Google Scholar 

  • Ganhão R, Morcuende D, Estévez M (2010) Tryptophan depletion and formation of α-aminoadipic and γ-glutamic semialdehydes in porcine burger patties with added phenolic-rich fruit extracts. J Agric Food Chem 58(6):3541–3548

    Article  PubMed  Google Scholar 

  • Gao Y, Zhuang H, Yeh HY et al (2019) Effect of rosemary extract on microbial growth, pH, color, and lipid oxidation in cold plasma-processed ground chicken patties. Innov Food Sci Emerg Technol 57:102168

    Article  CAS  Google Scholar 

  • Gavahian M, Peng HJ, Chu YH (2019) Efficacy of cold plasma in producing Salmonella-free duck eggs: effects on physical characteristics, lipid oxidation, and fatty acid profile. J Food Sci Technol 56(12):5271–5281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gayán E, Condón S, Álvarez I (2014) Biological aspects in food preservation by ultraviolet light: a review. Food Bioprocess Technol 7(1):1–20

    Article  Google Scholar 

  • Georgescu N, Apostol L, Gherendi F (2017) Inactivation of Salmonella enterica serovar Typhimurium on egg surface, by direct and indirect treatments with cold atmospheric plasma. Food Control 76:52–61

    Article  CAS  Google Scholar 

  • Gök V, Aktop S, Özkan M et al (2019) The effects of atmospheric cold plasma on inactivation of Listeria monocytogenes and Staphylococcus aureus and some quality characteristics of pastırma—a dry-cured beef product. Innov Food Sci Emerg Technol 56:102188

    Article  Google Scholar 

  • Grunert KG (2005) Food quality and safety: consumer perception and demand. Eur Rev Agric 32(3):369–391

    Article  Google Scholar 

  • Hamm R, Deatherage F (1960) Changes in hydration, solubility and changes of muscle proteins during heating of meat. J Food Sci 25(5):587–610

    Article  CAS  Google Scholar 

  • Huang M, Wang J, Zhuang H et al (2019) Effect of in-package high voltage dielectric barrier discharge on microbiological, color and oxidation properties of pork in modified atmosphere packaging during storage. Meat Sci 149:107–113

    Article  CAS  PubMed  Google Scholar 

  • Huff Lonergan E, Lonergan SM (2005) Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci 71(1):194–204

    Article  CAS  PubMed  Google Scholar 

  • Javanmard M, Rokni N, Bokaie S et al (2006) Effects of gamma irradiation and frozen storage on microbial, chemical and sensory quality of chicken meat in Iran. Food Control 17(6):469–473

    Article  CAS  Google Scholar 

  • Jayasena DD, Kim HJ, Yong HI et al (2015) Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. Food Microbiol 46:51–57

    Article  CAS  PubMed  Google Scholar 

  • Jo K, Lee J, Lee S et al (2020) Curing of ground ham by remote infusion of atmospheric non-thermal plasma. Food Chem 309:125643

    Article  CAS  PubMed  Google Scholar 

  • Joshi SG, Cooper M, Yost A et al (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55(3):1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung S, Kim HJ, Park S et al (2015) The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage. Meat Sci 108:132–137

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Lee J, Lim Y et al (2017) Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innov Food Sci Emerg Technol 39:113–118

    Article  CAS  Google Scholar 

  • Kim B, Yun H, Jung S et al (2011) Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol 28(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Yong HI, Park S et al (2013a) Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr Appl Phys 13(7):1420–1425

    Article  Google Scholar 

  • Kim HJ, Yong HI, Park S et al (2013b) Effect of inactivating Salmonella Typhimurium in raw chicken breast and pork loin using an atmospheric pressure plasma jet. Anim Sci Technol 55(6):545–549

    Article  Google Scholar 

  • Kim JS, Lee EJ, Choi EH et al (2014) Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innov Food Sci Emerg Technol 22:124–130

    Article  Google Scholar 

  • Knorr D (2018) Emerging technologies: back to the future. Trends Food Sci Technol 76:119–123

    Article  CAS  Google Scholar 

  • Lee HJ, Jung H, Choe W et al (2011) Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiol 28(8):1468–1471

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Yong HI, Kim HJ et al (2016) Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci Biotechnol 25(4):1189–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Lee CW, Yong HI et al (2017) Use of atmospheric pressure cold plasma for meat industry. Korean J Food Sci Anim Resour 37(4):477

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Jo K, Lim Y et al (2018) The use of atmospheric pressure plasma as a curing process for canned ground ham. Food Chem 240:430–436

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Liao X, Cui H (2019) Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella Typhimurium in poultry meat. Food Packag Shelf Life 21:100337

    Article  Google Scholar 

  • Lin L, Liao X, Li C et al (2020) Inhibitory effect of cold nitrogen plasma on Salmonella Typhimurium biofilm and its application on poultry egg preservation. LWT 126:109340

    Article  CAS  Google Scholar 

  • Lu H, Patil S, Keener KM et al (2014) Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. J Appl Microbiol 116(4):784–794

    Article  CAS  PubMed  Google Scholar 

  • Lund MN, Luxford C, Skibsted LH et al (2008) Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links. Biochem J 410(3):565–574

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Yan W, Nasiru MM et al (2019) Evaluation of physicochemical properties and volatile compounds of Chinese dried pork loin curing with plasma-treated water brine. Sci Rep 9(1):1–11

    Article  Google Scholar 

  • Luo J, Nasiru MM, Yan W et al (2020) Effects of dielectric barrier discharge cold plasma treatment on the structure and binding capacity of aroma compounds of myofibrillar proteins from dry-cured bacon. LWT 117:108606

    Article  CAS  Google Scholar 

  • Ma Q, Hamid N, Oey I et al (2016) Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. Innov Food Sci Emerg Technol 37:359–374

    Article  Google Scholar 

  • Mendis D, Rosenberg M, Azam F (2000) A note on the possible electrostatic disruption of bacteria. IEEE Trans Plasma Sci 28(4):1304–1306

    Article  Google Scholar 

  • Misra N, Jo C (2017) Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci Technol 64:74–86

    Article  CAS  Google Scholar 

  • Misra N, Pankaj S, Segat A et al (2016a) Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol 55:39–47

    Article  CAS  Google Scholar 

  • Misra N, Schlüter O, Cullen PJ (eds) (2016b) Cold plasma in food and agriculture. Elsevier, Amsterdam

    Google Scholar 

  • Morzel M, Gatellier P, Sayd T et al (2006) Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins. Meat Sci 73(3):536–543

    Article  CAS  PubMed  Google Scholar 

  • Moutiq R, Misra N, Mendonca A et al (2020) In-package decontamination of chicken breast using cold plasma technology: microbial, quality and storage studies. Meat Sci 159:107942

    Article  CAS  PubMed  Google Scholar 

  • Noriega E, Shama G, Laca A et al (2011) Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol 28(7):1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Olatunde OO, Benjakul S, Vongkamjan K (2019) Combined effects of high voltage cold atmospheric plasma and antioxidants on the qualities and shelf-life of Asian sea bass slices. Innov Food Sci Emerg Technol 54:113–122

    Article  CAS  Google Scholar 

  • Østdal H, Skibsted LH, Andersen HJ (1997) Formation of long-lived protein radicals in the reaction between H2O2-activated metmyoglobin and other proteins. Free Radic Biol Med 23(5):754–761

    Article  PubMed  Google Scholar 

  • Özen BÖ, Soyer A (2018) Effect of plant extracts on lipid and protein oxidation of mackerel (Scomber scombrus) mince during frozen storage. J Food Sci Technol 55(1):120–127

    Article  Google Scholar 

  • Pérez-Andrés JM, Álvarez C, Cullen P et al (2019) Effect of cold plasma on the techno-functional properties of animal protein food ingredients. Innov Food Sci Emerg Technol 58:102205

    Article  Google Scholar 

  • Pérez-Andrés JM, de Alba M, Harrison SM et al (2020) Effects of cold atmospheric plasma on mackerel lipid and protein oxidation during storage. LWT 118:108697

    Article  Google Scholar 

  • Qiao W, Huang M, Wang J et al (2017) The effects of cold plasma treatment on microbiological and color of raw beef. Food. Science 23:244–249. (CHINESE)

    Google Scholar 

  • Ragni L, Berardinelli A, Vannini L et al (2010) Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J Food Eng 100(1):125–132

    Article  CAS  Google Scholar 

  • Rød SK, Hansen F, Leipold F et al (2012) Cold atmospheric pressure plasma treatment of ready-to-eat meat: inactivation of Listeria innocua and changes in product quality. Food Microbiol 30(1):233–238

    Article  PubMed  Google Scholar 

  • Roh SH, Lee SY, Park HH et al (2019) Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment. Int J Food Microbiol 293:24–33

    Article  CAS  PubMed  Google Scholar 

  • Roh SH, Oh YJ, Lee SY et al (2020) Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. LWT 127:109429

    Article  CAS  Google Scholar 

  • Rossow M, Ludewig M, Braun PG (2018) Effect of cold atmospheric pressure plasma treatment on inactivation of Campylobacter jejuni on chicken skin and breast fillet. LWT 91:265–270

    Article  CAS  Google Scholar 

  • San Martin M, Barbosa-Cánovas G, Swanson B (2002) Food processing by high hydrostatic pressure. Crit Rev Food Sci Nutr 42(6):627–645

    Article  CAS  PubMed  Google Scholar 

  • Sarangapani C, Keogh DR, Dunne J et al (2017) Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chem 235:324–333

    Article  CAS  PubMed  Google Scholar 

  • Sharifian A, Soltanizadeh N, Abbaszadeh R (2019) Effects of dielectric barrier discharge plasma on the physicochemical and functional properties of myofibrillar proteins. Innov Food Sci Emerg Technol 54:1–8

    Article  CAS  Google Scholar 

  • Skibsted L, Mikkelsen A, Bertelsen G (1998) Lipid-derived off-flavours in meat. In: Flavor of meat, meat products and seafoods. Academic, London, pp 217–256

    Google Scholar 

  • Tappi S, Gozzi G, Vannini L et al (2016) Cold plasma treatment for fresh-cut melon stabilization. Innov Food Sci Emerg Technol 33:225–233

    Article  CAS  Google Scholar 

  • Tresp H, Hammer MU, Winter J et al (2013) Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. J Phys D Appl Phys 46(43):435401

    Article  Google Scholar 

  • Ulbin-Figlewicz N, Jarmoluk A (2016) Effect of low-pressure plasma treatment on the color and oxidative stability of raw pork during refrigerated storage. Food Sci Technol Int 22(4):313–324

    Article  PubMed  Google Scholar 

  • Ulbin-Figlewicz N, Brychcy E, Jarmoluk A (2015) Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. J Food Sci Technol 52(2):1228–1232

    Article  PubMed  Google Scholar 

  • Wan Z, Chen Y, Pankaj S et al (2017) High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella enteritidis contamination on egg shell. LWT 76:124–130

    Article  CAS  Google Scholar 

  • Wang J, Zhuang H, Hinton A Jr et al (2016) Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiol 60:142–146

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhuang H, Lawrence K et al (2018) Disinfection of chicken fillets in packages with atmospheric cold plasma: effects of treatment voltage and time. J Appl Microbiol 124(5):1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Warner RD (2017) The eating quality of meat—IV water-holding capacity and juiciness. In: Lawrie’s meat science. Woodhead Publishing, Duxford, pp 419–459

    Chapter  Google Scholar 

  • Yadav B, Spinelli AC, Govindan BN et al (2019) Cold plasma treatment of ready-to-eat ham: influence of process conditions and storage on inactivation of Listeria innocua. Food Res Int 123:276–285

    Article  CAS  PubMed  Google Scholar 

  • Yong HI, Kim HJ, Park S et al (2014) Evaluation of the treatment of both sides of raw chicken breasts with an atmospheric pressure plasma jet for the inactivation of Escherichia coli. Foodborne Pathog Dis 11(8):652–657

    Article  CAS  PubMed  Google Scholar 

  • Yong HI, Lee H, Park S et al (2017) Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat’s physicochemical properties. Meat Sci 123:151–156

    Article  CAS  PubMed  Google Scholar 

  • Yong HI, Park J, Kim HJ et al (2018) An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety. Plasma Process Polym 15(2):1700050

    Article  Google Scholar 

  • Yong HI, Lee SH, Kim SY et al (2019) Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innov Food Sci Emerg Technol 53:78–84

    Article  CAS  Google Scholar 

  • Zhang Y, Wei J, Yuan Y et al (2019) Bactericidal effect of cold plasma on microbiota of commercial fish balls. Innov Food Sci Emerg Technol 52:394–405

    Article  CAS  Google Scholar 

  • Zhuang H, Rothrock M Jr, Hiett K et al (2019a) In-package antimicrobial treatment of chicken breast meat with high voltage dielectric barrier discharge–electric voltage effect. J Appl Poult Res 28(4):801–807

    Article  CAS  Google Scholar 

  • Zhuang H, Rothrock MJ Jr, Hiett KL et al (2019b) In-package air cold plasma treatment of chicken breast meat: treatment time effect. J Food Qual 2019:1–7

    Article  Google Scholar 

  • Ziuzina D, Patil S, Cullen PJ et al (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Zhang, J. (2022). Application of Cold Plasma in Animal Meat and Poultry. In: Ding, T., Cullen, P., Yan, W. (eds) Applications of Cold Plasma in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-1827-7_9

Download citation

Publish with us

Policies and ethics