Skip to main content

Application of Cold Plasma in Liquid Food Products

  • Chapter
  • First Online:
Applications of Cold Plasma in Food Safety
  • 874 Accesses

Abstract

Cold plasma has garnered much attention in the last decade as food processing technology with potential in food preservation and managing the safety of food with minimum influence on quality characteristics. The action of cold plasma on pathogens is multi-targets, mostly including the cellular envelopes, cell membrane, lipids, proteins, and DNA via interaction with the reactive species in cold plasma and liquid medium. The multi-target high germicidal action of cold plasma on important food pathogens will undoubtedly play a vital role in the smooth adoption of this technology in fruit and vegetable juice and milk processing industries. Also, pH decline increased lipid oxidation, and changes in color, antioxidant activity, phenolic, and flavonoid concentrations were observed after cold plasma treatments. Therefore, intensified efforts are needed to address some of the quality issues relating to pH decline and heightened lipid oxidation in oily liquid food products, as this has a considerable influence on safety and consumer perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkawareek MY, Gorman SP, Graham WG et al (2014) Potential cellular targets and antibacterial efficacy of atmospheric pressure nonthermal plasma. Int J Antimicrob Agents 43(2):154–160

    Article  CAS  PubMed  Google Scholar 

  • Altemimi A, Lakhssassi N, Baharlouei A et al (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(42):1–23

    Google Scholar 

  • Borisov VB, Forte E, Siletsky SA et al (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition. Biochim Biophys Acta Biomembr 1847(2):182–188

    Article  CAS  Google Scholar 

  • Bußler S, Herppich WB, Neugart S et al (2015) Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum ‘Salamanca’). Food Res Int 76:132–141

    Article  Google Scholar 

  • Cao Y, Qu G, Li T et al (2018) Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer. Plasma Sci Technol 20:103001

    Article  Google Scholar 

  • CDC (2018) Burden of foodborne illness: findings. https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html. Accessed 17 Apr 2020

  • Corrales M, De Souza PM, Stahl MR et al (2012) Effects of the decontamination of a fresh tiger nuts’ milk beverage (horchata) with short wave ultraviolet treatments (UV-C) on quality attributes. Innov Food Sci Emerg Technol 13:163–168

    Article  CAS  Google Scholar 

  • Dasan BG, Boyaci IH (2018) Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food Bioprocess Technol 11(2):1–10

    Article  Google Scholar 

  • Dezest M, Bulteau AL, Quinton D et al (2017) Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. PLoS One 12(3):1–18

    Article  Google Scholar 

  • FDA (2004) Guidance for industry: juice hazard analysis critical control point hazards and controls guidance. 1st Edition. FDA Guidance Documents website. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-juice-hazard-analysis-critical-control-point-hazards-and-controls-guidance-first. Accessed 27 Apr 2020

  • Fröhling A, Schlüter O (2015) Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria. Front Microbiol 6:1–21

    Article  Google Scholar 

  • Gavahian M, Chu YH, Mousavi Khaneghah A et al (2018) A critical analysis of the cold plasma induced lipid oxidation in foods. Trends Food Sci Technol 77:32–41

    Article  CAS  Google Scholar 

  • Grahl T, Märkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45:148–157

    Article  CAS  PubMed  Google Scholar 

  • Gurol C, Ekinci FY, Aslan N et al (2012) Low temperature plasma for decontamination of E. coli in milk. Int J Food Microbiol 157(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Ha L, Patil S, Boehm D et al (2016) Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl Environ Microbiol 82(2):450–458

    Article  Google Scholar 

  • Hoffmann S, Maculloch B, Batz M (2015) Economic burden of major foodborne illnesses acquired in the United States. Economic Information Bulletin. https://www.ers.usda.gov/webdocs/publications/43984/52807_eib140.pdf

  • Hosseini SM, Rostami S, Hosseinzadeh Samani B et al (2020) The effect of atmospheric pressure cold plasma on the inactivation of Escherichia coli in sour cherry juice and its qualitative properties. Food Sci Nutr 8(2):870–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Wang R, Gan Z et al (2019) Effect of cold plasma on blueberry juice quality. Food Chem 290:79–86

    Article  CAS  PubMed  Google Scholar 

  • Joshi AA, Locke BR, Arce P et al (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41(1):3–30

    Article  CAS  Google Scholar 

  • Joshi SG, Cooper M, Yost A et al (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55(3):1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julák J, Hujacová A, Scholtz V et al (2018) Contribution to the chemistry of plasma-activated water. Plasma Phys Rep 44(1):125–136

    Article  Google Scholar 

  • Kim H-J, Yong HI, Park S et al (2015) Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control 47:451–456

    Article  CAS  Google Scholar 

  • Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233(1–3):81–86

    Article  CAS  Google Scholar 

  • Liao X, Liu D, Xiang Q et al (2017) Inactivation mechanisms of nonthermal plasma on microbes: a review. Food Control 75:83–91

    Article  CAS  Google Scholar 

  • Liao X, Li J, Muhammad AI et al (2018a) Application of a dielectric barrier discharge atmospheric cold Plasma (Dbd-Acp) for Escherichia coli inactivation in apple juice. J Food Sci 83(2):401–408

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Muhammad AI, Chen S et al (2018b) Bacterial spore inactivation induced by cold plasma. Crit Rev Food Sci Nutr 59(16):1–11

    Google Scholar 

  • Liao X, Xiang Q, Cullen PJ et al (2020) Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. LWT 117:108649

    Article  CAS  Google Scholar 

  • Lin CTJ, Jensen KL, Yen ST (2005) Awareness of foodborne pathogens among US consumers. Food Qual Prefer 16(5):401–412

    Article  Google Scholar 

  • Liu ZC, Liu DX, Chen C et al (2015) Physicochemical processes in the indirect interaction between surface air plasma and deionized water. J Phys D Appl Phys 48(49):495201

    Article  Google Scholar 

  • López M, Calvo T, Prieto M et al (2019) A review on nonthermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications. Front Microbiol 10:622

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukes P, Locke BR, Brisset J (2012) Aqueous-phase chemistry of electrical discharge plasma in water and in gas–liquid environments. In: Parvulescu VI, Magureanu M, Lukes P (eds) Plasma chemistry and catalysis in gases and liquids. Wiley, Hoboken, NJ, pp 243–308

    Chapter  Google Scholar 

  • Lukes P, Dolezalova E, Sisrova I et al (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol 23:015019

    Article  CAS  Google Scholar 

  • Lunov O, Zablotskii V, Churpita O et al (2016) The interplay between biological and physical scenarios of bacterial death induced by nonthermal plasma. Biomaterials 82:71–83

    Article  CAS  PubMed  Google Scholar 

  • Machala Z, Tarabova B, Hensel K et al (2013) Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Processes Polym 10(7):649–659

    Article  CAS  Google Scholar 

  • Malik A, Erginkaya Z, Ahmad S et al (eds) (2014) Food process: strategies for quality assessment, Food engineering series. Springer, New York

    Google Scholar 

  • Mehta D, Yadav SK (2020) Impact of atmospheric nonthermal plasma and hydrothermal treatment on bioactive compounds and microbial inactivation of strawberry juice: a hurdle technology approach. Int J Food Sci 26(1):3–10

    CAS  Google Scholar 

  • Moisan M, Barbeau J, Crevier M-C et al (2002) Plasma sterilization. Methods and mechanisms. Pure Appl Chem 74(3):349–358

    Article  CAS  Google Scholar 

  • Muhammad AI, Li Y, Liao X et al (2018a) Effect of dielectric barrier discharge plasma on background microflora and physicochemical properties of tiger nut milk. Food Control 96:119–127

    Article  Google Scholar 

  • Muhammad AI, Liao X, Cullen PJ et al (2018b) Effects of nonthermal plasma technology on functional food components. Compr Rev Food Sci Food Saf 17(5):1379–1394

    Article  CAS  PubMed  Google Scholar 

  • Muhammad AI, Xiang Q, Liao X et al (2018c) Understanding the impact of nonthermal plasma on food constituents and microstructure—a review. Food Bioprocess Technol 11(3):463–486

    Article  CAS  Google Scholar 

  • Muhammad AI, Chen W, Liao X et al (2019a) Effects of plasma-activated water and blanching on microbial and physicochemical properties of tiger nuts. Food Bioprocess Technol 12(10):1721–1732

    Article  CAS  Google Scholar 

  • Muhammad AI, Lv R, Liao X et al (2019b) Modeling the inactivation of Bacillus cereus in tiger nut milk treated with cold atmospheric pressure plasma. J Food Prot 82(11):1828–1836

    Article  CAS  PubMed  Google Scholar 

  • Olivier SP, Jayarao BM, Almeida RA (2005) Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2(2):115–137

    Article  Google Scholar 

  • Pankaj SK, Wan Z, Colonna W et al (2017) Effect of high voltage atmospheric cold plasma on white grape juice quality. J Sci Food Agric 97(12):4016–4021

    Article  CAS  PubMed  Google Scholar 

  • Pankaj SK, Wan Z, Keener KM (2018) Effects of cold plasma on food quality: a review. Foods 7(1):4

    Article  PubMed Central  Google Scholar 

  • Park JH, Kumar N, Park DH et al (2015) A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nanosecond pulsed plasma. Sci Rep 5:13849

    Article  PubMed  Google Scholar 

  • Petruzzi L, Campaniello D, Speranza B et al (2017) Thermal treatments for fruit and vegetable juices and veverages: a literature overview. Compr Rev Food Sci Food Saf 16(4):668–691

    Article  PubMed  Google Scholar 

  • Scherhaufer S, Moates G, Hartikainen H et al (2018) Environmental impacts of food waste in Europe. Waste Manag 77:98–113

    Article  PubMed  Google Scholar 

  • Schlüter O, Fröhling A (2014) Cold plasma for bioefficient food processing. Encyclopedia Food Microbiol 2:948–953

    Article  Google Scholar 

  • Shen J, Tian Y, Li Y et al (2016) Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci Rep 6:28505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Zhang G, Wu X et al (2011) Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Trans Plasma Sci 39(7):1591–1597

    Article  CAS  Google Scholar 

  • Shimizu T, Iwafuchi Y, Morfill GE (2011) Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma. New J Phys 13:053025

    Article  Google Scholar 

  • Slosky LM, Vanderah TW (2015) Therapeutic potential of peroxynitrite decomposition catalysts: a patent review. Expert Opin Ther Pat 25(4):443–466

    Article  CAS  PubMed  Google Scholar 

  • Starek A, PawÅ‚at J, Chudzik B et al (2019) Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • Stenmarck Ã…, Jensen C, Quested T et al. (2016) Estimates of European food waste levels. In Fusions. https://www.eu-fusions.org/phocadownload/Publications/Estimates of European food waste levels.pdf%5Cnhttps://phys.org/news/2016-12-quarter-million-tonnes-food-logistics.html#nRlv

  • Surowsky B, Fröhling A, Gottschalk N et al (2014a) Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms. Int J Food Microbiol 174:63–71

    Article  CAS  PubMed  Google Scholar 

  • Surowsky B, Schlüter O, Knorr D (2014b) Interactions of nonthermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Eng Rev 7(2):82–108

    Article  Google Scholar 

  • Tyczkowska-Sieron E, Markiewicz J, Grzesiak B et al (2018) Short communication: cold atmospheric plasma inactivation of Prototheca zopfii isolated from bovine milk. Int J Dairy Sci 101(1):118–122

    Article  CAS  Google Scholar 

  • Wang Y, Wang Z, Zhu X et al (2020) Application of electrical discharge plasma on the inactivation of Zygosaccharomyces rouxii in apple juice. LWT-Food Sci Technol 121:108974

    Article  CAS  Google Scholar 

  • Weber D, Davies MJ, Grune T (2015) Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: focus on sample preparation and derivatization conditions. Redox Biol 5:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World-Bank (2018) Foodborne illnesses cost US$ 110 billion per year in low- and middle-income countries. 2019/072/AGR website. https://www.worldbank.org/en/news/press-release/2018/10/23/food-borne-illnesses-cost-us-110-billion-per-year-in-low-and-middle-income-countries. Accessed 27 Mar 2020

  • Xiang Q, Liu X, Li J et al (2018) Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice. Food Chem 254(136):201–207

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Garner AL, Tao B et al (2017) Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food Bioprocess Technol 10:1778–1791

    Article  CAS  Google Scholar 

  • Xu H, Zhu Y, Cui D et al (2019) Evaluating the roles of OH radicals, H2O2, ORP and pH in the inactivation of yeast cells on a tissue model by surface micro-discharge plasma. J Phys D Appl Phys 52(39):395201

    Article  CAS  Google Scholar 

  • Xu H, Ma R, Zhu Y et al (2020) A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection. Sci Total Environ 703:134965

    Article  CAS  PubMed  Google Scholar 

  • Yannam SK, Estifaee P, Rogers S et al (2018) Application of high voltage electrical discharge plasma for the inactivation of Escherichia coli ATCC 700891 in tangerine juice. LWT-Food Sci Technol 90:180–185

    Article  CAS  Google Scholar 

  • Zhang Q, Ma R, Tian Y et al (2016) Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ Sci Technol 50(6):3184–3192

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Zhou R, Prasad K et al (2018) Cold atmospheric plasma activated water as a prospective disinfectant the crucial role of peroxynitrite. Green Chem 20:5276–5284

    Article  CAS  Google Scholar 

  • Zuizina D, Patil S, Cullen PJ et al (2012) Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol 114:778–787

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliyu Idris Muhammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muhammad, A.I. (2022). Application of Cold Plasma in Liquid Food Products. In: Ding, T., Cullen, P., Yan, W. (eds) Applications of Cold Plasma in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-1827-7_11

Download citation

Publish with us

Policies and ethics