Skip to main content

Property Improvements of Wood and Wood-Plastic Composites

  • Chapter
  • First Online:
Wood Polymer Composites

Part of the book series: Composites Science and Technology ((CST))

  • 498 Accesses

Abstract

Several factors such as type of wood species e.g. soft wood, hard wood, wood flour (WF) particle size, particle shape, particle aspect ratio, type of polymer matrices, dispersion of wood flour in polymer matrix as well as interfacial interaction i.e. interfacial adhesion between wood flour particle and polymer matrix affect the properties of Wood plastic-composite (WPC). Among the above factors, the most significant and important factor is the interfacial adhesion between WF and polymer matrix that affects the properties of WPC materials largely. WPC material obtained by normal blending of wood flour and polymer matrix, due to their incompatibility, does not exhibit improved properties. The poor adhesion or incompatibilization at the interface between WF and polymer matrix decreases the mechanical properties of WPC materials that limits the use of WF as filler in polymer matrices. Hence, compatibilization between wood flour and polymer matrices is the main focus of this chapter. By reading this chapter reader will learn the chemistry and mechanism of compatibility of different compatibilizing systems (such as coupling agents as well as silane treatments, acetylation and benzylation of wood flour, etc.) and their effect on the properties of WPC materials. After reading this chapter reader will also know the effect of thermal treatment of wood flour, effect of nanofillers addition as well as wet pulverization of WF on the properties of WPC materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABS:

Acrylonitrile butadiene styrene

APM2ES:

γ-Aminopropylmethyldiethoxysilane

APTES:

γ -Aminopropyltriethoxysilane

E-GMA:

Ethylene-glycidyl methacrylate copolymer

EPDM-MA:

Maleic anhydride graft ethylene propylene diene monomer

EVA:

Ethylene vinyl acetate

HDPE:

High density polyethylene

LLDPE:

Linear low density polyethylene

MAPE:

Maleic anhydride graft polyethylene

MAPP:

Maleic anhydride graft polypropylene

MPTES:

γ-Methacryloxypropyltrimethoxysilane

NAPTES:

N-2(aminoethyl)-3-aminopropyltrimethoxysilane

PE:

Polyethylene

PMPPIC:

Polymethylene polyphenylisocyanate

PP:

Polypropylene

PS:

Polystyrene

PVC:

Polyvinyl chloride

SANMA:

Maleic anhydride graft styrene acrylonitrile

SEBS-MA:

Maleic anhydride graft Styrene Ethylene Butylene Styrene

SMA:

Styrene maleic anhydride

VTES:

Vinyltriethoxysilane

VTMS:

Vinyltrimethoxysilane

V2MES:

Vinyltri(2-methoxyethoxy)silane

WPC:

Wood plastic composite

WF:

Wood flour

References

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63

    Article  Google Scholar 

  • Alrubaie MAA, Lopez-Anido RA, Gardner DJ (2020) Flexural creep behavior of high-density polyethylene lumber and wood plastic composite lumber made from thermally modified wood. Polymers 12(2):262

    Article  CAS  Google Scholar 

  • Askanian H, Verney V, Commereuc S, Guyonnet R, Massardier V (2015) Wood polypropylene composites prepared by thermally modified fibers at two extrusion speeds: mechanical and viscoelastic properties. Holzforschung 69(3):313–319

    Article  CAS  Google Scholar 

  • Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P (2011) Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polym Degrad Stab 96(5):818–822

    Article  CAS  Google Scholar 

  • Borah JS, Kim DS (2016) Recent development in thermoplastic/wood composites and nanocomposites: a review. Korean J Chem Eng 33(11):3035–3049

    Article  CAS  Google Scholar 

  • Bengtsson M, Oksman K, Stark NM (2006) Profile extrusion and mechanical properties of crosslinked wood–thermoplastic composites. Polym Compos 27(2):184–194

    Article  CAS  Google Scholar 

  • Bengtsson M, Oksman K (2006) Silane crosslinked wood plastic composites: processing and properties. Compos Sci Technol 66(13):2177–2186

    Article  CAS  Google Scholar 

  • Berger MJ, Stark NM (1997) Investigations of species effects in an injection-molding-grade, wood-filled polypropylene. In The fourth international conference on woodfiber-plastic composites, pp. 19–25, May 1997

    Google Scholar 

  • Chan CM, Vandi LJ, Pratt S, Halley P, Richardson D, Werker A, Laycock B (2018) Composites of wood and biodegradable thermoplastics: a review. Polym Rev 58(3):444–494

    Article  CAS  Google Scholar 

  • Chao YY, Hung KC, Xu JW, Wu TL, Wu JH (2020) Effects of acetylated veneer on the natural weathering properties of adhesive-free veneer overlaid wood-plastic composites. Polymers 12(3):513

    Article  CAS  Google Scholar 

  • Cui Y, Lee S, Noruziaan B, Cheung M, Tao J (2008) Fabrication and interfacial modification of wood/recycled plastic composite materials. Compos A Appl Sci Manuf 39(4):655–661

    Article  CAS  Google Scholar 

  • Dányádi L, Móczó J, Pukánszky B (2010) Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos A Appl Sci Manuf 41(2):199–206

    Article  CAS  Google Scholar 

  • Deka BK, Maji TK (2011) Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Compos A Appl Sci Manuf 42(12):2117–2125

    Article  CAS  Google Scholar 

  • Deka BK, Maji TK (2012) Effect of silica nanopowder on the properties of wood flour/polymer composite. Polym Eng Sci 52(7):1516–1523

    Article  CAS  Google Scholar 

  • Delviawan A, Kojima Y, Kobori H, Suzuki S, Aoki K, Ogoe S (2019) The effect of wood particle size distribution on the mechanical properties of wood–plastic composite. J Wood Sci 65(1):1–11

    Article  CAS  Google Scholar 

  • Djidjelli H, Benachour D, Boukerrou A, Zefouni O, Martinez-Véga J, Farenc J, Kaci M (2007) Thermal, dielectric and mechanical study of poly (vinyl chloride)/olive pomace composites. Express Polym Lett 1(12):846–852

    Article  CAS  Google Scholar 

  • Dominkovics Z, Dányádi L, Pukanszky B (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos A Appl Sci Manuf 38(8):1893–1901

    Article  CAS  Google Scholar 

  • Fang L, Chang L, Guo WJ, Chen Y, Wang Z (2014) Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood. Appl Surf Sci 288:682–689

    Article  CAS  Google Scholar 

  • Faruk O, Matuana LM (2008) Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Compos Sci Technol 68(9):2073–2077

    Article  CAS  Google Scholar 

  • Farsi M (2010) Wood-plastic composites: influence of wood flour chemical modification on the mechanical performance. J Reinf Plast Compos 29(24):3587–3592

    Article  CAS  Google Scholar 

  • Fayzullin IZ, Volfson SI, Musin IN, Fayzullin AZ, Nikiforov AA. (2016) Influence of the type of wood flour and nanoadditives on the structure and mechanical properties of polypropylene-based wood-polymer composites. In: AIP conference proceedings, vol 1785, no 1, p 040098. AIP Publishing LLC, November 2016

    Google Scholar 

  • Fu S, Song P, Yang H, Jin Y, Lu F, Ye J, Wu Q (2010) Effects of carbon nanotubes and its functionalization on the thermal and flammability properties of polypropylene/wood flour composites. J Mater Sci 45(13):3520–3528

    Article  CAS  Google Scholar 

  • Geng Y, Laborie MPG (2010) The impact of silane chemistry conditions on the properties of wood plastic composites with low density polyethylene and high wood content. Polym Compos 31(5):897–905

    Article  CAS  Google Scholar 

  • Gregorova A, Wimmer R, Hrabalova M, Koller M, Ters T, Mundigler N (2009) Effect of surface modification of beech wood flour on mechanical and thermal properties of poly (3-hydroxybutyrate)/wood flour composites. Holzforschung 63(5):565–570

    Article  CAS  Google Scholar 

  • Hafshejani KT, Khorasani SN, Jahadi M, Hafshejani MS, Neisiany RE (2019) Improving mechanical and thermal properties of high-density polyethylene/wood flour nanocomposites. J Therm Anal Calorim 137(1):175–183

    Article  CAS  Google Scholar 

  • Hämäläinen K, Kärki T (2014) Effects of wood flour modification on the fire retardancy of wood–plastic composites. Eur J Wood Wood Prod 72(6):703–711

    Article  CAS  Google Scholar 

  • Harnnarongchai W, Kaschta J, Schubert DW, Sombatsompop N (2012) Shear and elongational flow properties of peroxide-modified wood/low-density polyethylene composite melts. Polym Compos 33(11):2084–2094

    Article  CAS  Google Scholar 

  • Haque MMU, Goda K, Ito H, Ogoe S, Okamot M, Ema T, Nogami H (2019) Melt-viscosity and mechanical behaviour of polypropylene (PP)/wood flour composites: effect of pulverization of wood flour with and without water. Adv Ind Eng Polymer Res 2(1):42–50

    Article  Google Scholar 

  • Haque MMU, Goda K, Ito H, Ogoe S, Okamoto M, Ema T, Nogami H (2019a) Fatigue performance of wet and dry pulverized wood flour reinforced PP composites. J Comp Sci 3(1):20

    Article  CAS  Google Scholar 

  • Haque MMU, Goda K, Ogoe S, Sunaga Y (2019b) Fatigue analysis and fatigue reliability of polypropylene/wood flour composites. Adv Ind Eng Polymer Res 2(3):136–142

    Article  Google Scholar 

  • Hon DNS, Ou NH (1989) Thermoplasticization of wood. I. Benzylation of wood. J Polym Sci A Polym Chem 27(7):2457–2482

    Article  CAS  Google Scholar 

  • Hon DNS, Chao WY (1993) Composites from benzylated wood and polystyrenes: their processability and viscoelastic properties. J Appl Polym Sci 50(1):7–11

    Article  CAS  Google Scholar 

  • Hung KC, Wu TL, Chen YL, Wu JH (2016) Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites. Constr Build Mater 108:139–145

    Article  CAS  Google Scholar 

  • Hung KC, Wu JH (2010) Mechanical and interfacial properties of plastic composite panels made from esterified bamboo particles. J Wood Sci 56(3):216–221

    Article  CAS  Google Scholar 

  • Hu X, Li D, Luo B, Li L (2020) Weathering characteristics of wood-plastic composites compatibilized with ethylene vinyl acetate. BioResources 15(2):3930–3944

    Article  CAS  Google Scholar 

  • Ibach RE, Clemons CM (2017) Long term durability of wood-plastic composites made with chemically modified wood. In: Advancements in fiber-polymer composites conference proceedings, Madison, WI, pp 1–17

    Google Scholar 

  • Ichazo MN, Albano C, Gonzalez J, Perera R, Candal AM (2001) Polypropylene/wood flour composites: treatments and properties. Compos Struct 54(2–3):207–214

    Article  Google Scholar 

  • Isa A, Toyoda T, Suzuki S, Kojima Y, Ito H, Makise R, Okamoto M (2014) The effects of wet-milled wood flour on the mechanical properties of wood flour/polypropylene composites. J Wood Chem Technol 34(1):20–30

    Article  CAS  Google Scholar 

  • Jebrane M, Sebe G (2007) A novel simple route to wood acetylation by transesterification with vinyl acetate. Holzforschung 61(2):143–147

    Article  CAS  Google Scholar 

  • Kaboorani A (2009) Thermal properties of composites made of heat-treated wood and polypropylene. J Compos Mater 43(22):2599–2607

    Article  CAS  Google Scholar 

  • Kaboorani A, Faezipour M, Ebrahimi G (2008) Feasibility of using heat treated wood in wood/thermoplastic composites. J Reinf Plast Compos 27(16–17):1689–1699

    Article  CAS  Google Scholar 

  • Kajaks J, Zagorska A, Mezinskis A (2015) Some exploitation properties of wood plastic composites (WPC) based on high density polyethylene and timber industry waste. J Mater. Sci 21(3):396–399

    Google Scholar 

  • Kallakas H, Shamim MA, Olutubo T, Poltimäe T, Süld TM, Krumme A, Kers J (2015) Effect of chemical modification of wood flour on the mechanical properties of wood-plastic composites. Agron Res 13(3):639–653

    Google Scholar 

  • Källbom S, Lillqvist K, Spoljaric S, Seppälä J, Segerholm K, Rautkari L, Wålinder M (2020) Effects of water soaking–drying cycles on thermally modified spruce wood–plastic composites. Wood Fiber Sci 52(1):2–12

    Article  Google Scholar 

  • Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Als Roh-Und Werkstoff 60(1):1–6

    Article  CAS  Google Scholar 

  • Kaymakci A, Birinci E, Ayrilmis N (2019) Surface characteristics of wood polypropylene nanocomposites reinforced with multi-walled carbon nanotubes. Compos B Eng 157:43–46

    Article  CAS  Google Scholar 

  • Kaymakci A (2019) Effect of titanium dioxide on some mechanical, thermal, and surface properties of wood-plastic nanocomposites. BioResources 14(1):1969–1979

    Article  CAS  Google Scholar 

  • Khonsari A, Taghiyari HR, Karimi A, Tajvidi M (2015) Study on the effects of wood flour geometry on physical and mechanical properties of wood-plastic composites. Maderas Ciencia Y Tecnología 17(3):545–558

    CAS  Google Scholar 

  • Kim HS, Lee BH, Choi SW, Kim S, Kim HJ (2007) The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos A Appl Sci Manuf 38(6):1473–1482

    Article  CAS  Google Scholar 

  • Kim TW, Lee SY, Chun SJ, Doh GH, Paik KH (2011) Effect of silane coupling on the fundamental properties of wood flour reinforced polypropylene composites. J Compos Mater 45(15):1595–1605

    Article  CAS  Google Scholar 

  • Kocaefe D, Poncsak S, Boluk Y (2008) Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources 3(2):517–537

    Google Scholar 

  • Kokta BV, Raj RG, Daneault C (1989) Use of wood flour as filler in polypropylene: Studies on mechanical properties. Polym-Plast Technol Eng 28(3):247–259

    Article  CAS  Google Scholar 

  • Koohestani B, Ganetri I, Yilmaz E (2017) Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. Compos B Eng 111:103–111

    Article  CAS  Google Scholar 

  • Kordkheili HY, Farsi M, Rezazadeh Z (2013) Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Compos B Eng 44(1):750–755

    Article  CAS  Google Scholar 

  • Kurimoto Y, Sasaki S (2013) Preparation of acetylated wood meal and polypropylene composites I: acetylation of wood meal by mechanochemical processing and its characteristics. J Wood Sci 59(3):209–215

    Article  CAS  Google Scholar 

  • Kurimoto Y, Sasaki S (2013a) Preparation of acetylated wood meal and polypropylene composites II: mechanical properties and dimensional stability of the composites. J Wood Sci 59(3):216–220

    Article  CAS  Google Scholar 

  • Lafia-Araga RA, Hassan A, Yahya R, Rahman NA, Hornsby PR, Heidarian J (2012) Thermal and mechanical properties of treated and untreated Red Balau (Shorea dipterocarpaceae)/LDPE composites. J Reinf Plast Compos 31(4):215–224

    Article  CAS  Google Scholar 

  • Lee H, Kim DS (2009) Preparation and physical properties of wood/polypropylene/clay nanocomposites. J Appl Polym Sci 111(6):2769–2776

    Article  CAS  Google Scholar 

  • Lee SY, Yang HS, Kim HJ, Jeong CS, Lim BS, Lee JN (2004) Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Compos Struct 65(3–4):459–469

    Article  Google Scholar 

  • Lei Y, Wu Q (2010) Wood plastic composites based on microfibrillar blends of high density polyethylene/poly (ethylene terephthalate). Biores Technol 101(10):3665–3671

    Article  CAS  Google Scholar 

  • Lisperguer J, Droguett C, Ruf B, Nunez M (2007) The effect of wood acetylation on thermal behavior of wood-polystyrene composites. J Chil Chem Soc 52(1):1073–1075

    Article  CAS  Google Scholar 

  • Luo S, Cao J, Peng Y (2014) Properties of glycerin-thermally modified wood flour/polypropylene composites. Polym Compos 35(2):201–207

    Article  CAS  Google Scholar 

  • Ma Y, He H, Huang B, Jing H, Zhao Z (2020) In situ fabrication of wood flour/nano silica hybrid and its application in polypropylene-based wood-plastic composites. Polym Compos 41(2):573–584

    Article  CAS  Google Scholar 

  • Malakani M, Bazyar B, Talaiepour M, Hemmasi AH, Ghasemi I (2015) Effect of acetylation of wood flour and MAPP content during compounding on physical properties, decay resistance, contact angle, and morphology of polypropylene/wood flour composites. BioResources 10(2):2113–2129

    Article  CAS  Google Scholar 

  • Maldas D, Kokta BV, Raj RG, Daneault C (1988) Improvement of the mechanical properties of sawdust wood fibre—polystyrene composites by chemical treatment. Polymer 29(7):1255–1265

    Article  CAS  Google Scholar 

  • Matuana LM, Woodhams RT, Balatinecz JJ, Park CB (1998) Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polym Compos 19(4):446–455

    Article  CAS  Google Scholar 

  • Mbarek TB, Robert L, Sammouda H, Charrier B, Orteu JJ, Hugot F (2013) Effect of acetylation and additive on the tensile properties of wood fiber–high-density polyethylene composite. J Reinf Plast Compos 32(21):1646–1655

    Article  CAS  Google Scholar 

  • Mengeloğlu F, Karakuş K (2008) Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turk J Agric For 32(6):537–546

    Google Scholar 

  • Müller M, Radovanovic I, Grüneberg T, Militz H, Krause A (2012) Influence of various wood modifications on the properties of polyvinyl chloride/wood flour composites. J Appl Polym Sci 125(1):308–312

    Article  CAS  Google Scholar 

  • Murayama K, Ueno T, Kobori H, Kojima Y, Suzuki S, Aoki K, Okamoto M (2019) Mechanical properties of wood/plastic composites formed using wood flour produced by wet ball-milling under various milling times and drying methods. J Wood Sci 65(1):1–10

    Article  Google Scholar 

  • Myers GE, Chahyadi IS, Coberly CA, Ermer DS (1991) Wood flour/polypropylene composites: influence of maleated polypropylene and process and composition variables on mechanical properties. Int J Polym Mater 15(1):21–44

    Article  CAS  Google Scholar 

  • Niemz P, Hofmann T, Rétfalvi T (2010) Investigation of chemical changes in the structure of thermally modified wood. Maderas. Ciencia Y Tecnología 12(2):69–78

    Article  CAS  Google Scholar 

  • Niu Z, Chen Y, Feng J (2016) Preparation, structure, and property of wood flour incorporated polypropylene composites prepared by a solid‐state mechanochemical method. J Appl Polym Sci 133(10)

    Google Scholar 

  • Oksman K, Clemons C (1998) Mechanical properties and morphology of impact modified polypropylene–wood flour composites. J Appl Polym Sci 67(9):1503–1513

    Article  CAS  Google Scholar 

  • Özmen N, Çetin NS, Mengeloğlu F, Birinci E, Karakuş K (2013) Effect of wood acetylation with vinyl acetate and acetic anhydride on the properties of wood-plastic composites. BioResources 8(1):753–767

    Google Scholar 

  • Peng Y, Liu R, Cao J (2015) Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering. Appl Surf Sci 332:253–259

    Article  CAS  Google Scholar 

  • Peng Y, Li X, Wang W, Cao J (2020) Photodegradation of wood flour/polypropylene composites incorporated with carbon materials with different morphologies. Wood Mat Sci Eng 15(2):104–113

    Article  CAS  Google Scholar 

  • Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38(10–11):1653–1689

    Article  CAS  Google Scholar 

  • Seo YW, Kim DS (2014) Effects of wood flour size on the physical properties of polypropylene/wood flour composites. Polymer Korea 38(3):327–332

    Article  CAS  Google Scholar 

  • Sewda K, Maiti SN (2013) Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polym Bull 70(10):2657–2674

    Article  CAS  Google Scholar 

  • Shah BL, Matuana LM, Heiden PA (2005) Novel coupling agents for PVC/wood-flour composites. J Vinyl Add Tech 11(4):160–165

    Article  CAS  Google Scholar 

  • Soccalingame L, Bourmaud A, Perrin D, Bénézet JC, Bergeret A (2015) Reprocessing of wood flour reinforced polypropylene composites: impact of particle size and coupling agent on composite and particle properties. Polym Degrad Stab 113:72–85

    Article  CAS  Google Scholar 

  • Stark NM, Berger MJ (1997) Effect of particle size on properties of wood-flour reinforced polypropylene composites. In: Proceedings of the fourth international conference on woodfibre–plastic composites, pp 12–14, May 1997

    Google Scholar 

  • Tabar MM, Tabarsa T, Mashkour M, Khazaeian A (2015) Using silicon dioxide (SiO2) nano-powder as reinforcement for walnut shell flour/HDPE composite materials. J Indian Acad Wood Sci 12(1):15–21

    Article  Google Scholar 

  • Tisserat B, Reifschneider L, Joshee N, Finkenstadt VL (2013) Properties of high density polyethylene–Paulownia wood flour composites via injection molding. BioResources 8(3):4440–4458

    Article  Google Scholar 

  • Tuong VM, Li J (2010) Effect of heat treatment on the change in color. BioResources 5(2):1257–1267

    Google Scholar 

  • Turku I, Kärki T (2014) Research progress in wood-plastic nanocomposites: a review. J Thermoplast Compos Mater 27(2):180–204

    Article  Google Scholar 

  • Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819

    Article  CAS  Google Scholar 

  • Yadav SM, Yusoh KB (2019) Sub-surface mechanical properties and sub-surface creep behavior of wood-plastic composites reinforced by organoclay. Sci Eng Compos Mater 26(1):114–121

    Article  CAS  Google Scholar 

  • Yeh SK, Agarwal S, Gupta RK (2009) Wood–plastic composites formulated with virgin and recycled ABS. Compos Sci Technol 69(13):2225–2230

    Article  CAS  Google Scholar 

  • Ye X, Wang H, Wu Z, Zhou H, Tian X (2018) The functional features and interface design of wood/polypropylene composites based on microencapsulated wood particles via adopting in situ emulsion polymerization. Polym Compos 39(2):427–436

    Article  CAS  Google Scholar 

  • Yim H, Kim DS (2012) Physical properties of PVC/aminosilane-treated wood flour/organoclay composites. Polym Adv Technol 23(11):1441–1445

    Article  CAS  Google Scholar 

  • Zhao Y, Wang K, Zhu F, Xue P, Jia M (2006) Properties of poly (vinyl chloride)/wood flour/montmorillonite composites: effects of coupling agents and layered silicate. Polym Degrad Stab 91(12):2874–2883

    Article  CAS  Google Scholar 

  • Zhu L, Cao J, Wang Y, Liu R, Zhao G (2014) Effect of MAPP on interfacial compatibility of wood flour/polypropylene composite evaluated with dielectric approach. Polym Compos 35(3):489–494

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Minhaz-Ul Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haque, M.MU. (2021). Property Improvements of Wood and Wood-Plastic Composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Kumar, M.H., Siengchin, S. (eds) Wood Polymer Composites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1606-8_4

Download citation

Publish with us

Policies and ethics