Skip to main content

Functional Nucleic Acid-Protein Complexes: Application to Fluorescent Ribonucleopeptide Sensors

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Nucleic acids, such as DNA and RNA, are functional biopolymers that play a vital role as information carriers for life phenomena in animals, plants, and even some viruses. Important aspects of cellular processes, such as gene expression, replication, and recombination, are controlled by signal transduction involving proteins and peptides that interact with nucleic acids (called nucleic acid-binding proteins/peptides). Due to their importance in biological processes, the three-dimensional (3D) structures of numerous nucleic acid-protein complexes have been elucidated. Their physiological roles and the molecular recognition mechanisms of complex formation were investigated in detail. Also, nucleic acid-binding proteins with novel functions were designed and synthesized. This chapter introduces the molecular recognition modes between the nucleic acids and their binding proteins. Further, the artificial design of the proteins that bind to nucleic acids, their complexes based on the 3D structures, and recognition modes are discussed. Also, the preparation of the functional molecules using RNA-peptide complexes called ribonucleopeptides (RNPs) and their capabilities as receptors and catalysts are described. Finally, particular emphasis is given to the development and applications of the RNPs as fluorescent sensors for various biomolecular analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Annoni C et al (2012) Construction of ratiometric fluorescent sensors by ribonucleopeptides. Org Biomol Chem 10(44):8767–8769

    Article  CAS  PubMed  Google Scholar 

  • Bartas M et al (2021) Amino acid composition in various types of nucleic acid-binding proteins. Int J Mol Sci 22(2):1–12

    Article  CAS  Google Scholar 

  • Beckmann BM, Castello A, Medenbach J (2016) The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Archiv: Eur J Physiol 468(6):1029–1040

    Article  CAS  Google Scholar 

  • Carrette LLG, Morii T, Madder A (2013) Toxicity inspired cross-linking for probing DNA–peptide interactions. Bioconjug Chem 24(12):2008–2014

    Article  CAS  PubMed  Google Scholar 

  • Cuenoud B, Schepartz A (1993) Altered specificity of DNA-binding proteins with transition metal dimerization domains. Science 259(5094):510–513

    Article  CAS  PubMed  Google Scholar 

  • Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325(5941):725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M et al (2011) Two-dimensional DNA origami assemblies using a four-way connector. Chem Commun 47(11):3213–3215

    Article  CAS  Google Scholar 

  • Eskelinen A-P et al (2012) Controlling the formation of DNA origami structures with external signals. Small 8(13):2016–2020

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M et al (2009) Development of a fluorescent Ribonucleopeptide sensor for histamine. Trans Mater Res Soc Jpn 34(3):525–527

    Article  CAS  Google Scholar 

  • Gamsjaeger R et al (2007) Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci 32(2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15(12):829–845

    Article  CAS  PubMed  Google Scholar 

  • Hagihara M et al (2006) A modular strategy for tailoring fluorescent biosensors from Ribonucleopeptide complexes. J Am Chem Soc 128(39):12932–12940

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T et al (2007) Stepwise functionalization of Ribonucleopeptides: optimization of the response of fluorescent Ribonucleopeptide sensors for ATP. Nucleosides Nucleotides Nucleic Acids 26(10–12):1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T et al (2008) Context-dependent fluorescence detection of a phosphorylated tyrosine residue by a Ribonucleopeptide. J Am Chem Soc 130(27):8804–8812

    Article  CAS  PubMed  Google Scholar 

  • Hentze MW et al (2018) A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 19(5):327–341

    Article  CAS  PubMed  Google Scholar 

  • Hudson WH, Ortlund EA (2014) The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol 15(11):749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M-S, Kini AG (2017) Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol Cells 40(8):533–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liew FF et al (2011) Construction of dopamine sensors by using fluorescent ribonucleopeptide complexes. Bioorg Med Chem 19(15):4473–4481

    Article  CAS  PubMed  Google Scholar 

  • Luscombe NM et al (2000) An overview of the structures of protein-DNA complexes. Genome Biol 1(1):Reviews 001

    Article  CAS  Google Scholar 

  • Mack DP et al (1990) Orientation of the putative recognition helix in the DNA-binding domain of Hin recombinase complexed with the Hix site. Biochemistry 29(28):6561–6567

    Article  CAS  PubMed  Google Scholar 

  • Morii T (2017) A bioorganic chemistry approach to understanding molecular recognition in protein–nucleic acid complexes. Bull Chem Soc Jpn 90(12):1309–1317

    Article  CAS  Google Scholar 

  • Morii T et al (1993) Sequence-specific DNA binding by a geometrically constrained peptide dimer. J Am Chem Soc 115(3):1150–1151

    Article  CAS  Google Scholar 

  • Nakano S, Nakata E, Morii T (2011) Facile conversion of RNA Aptamers to modular fluorescent sensors with tunable detection wavelengths. Bioorg Med Chem Lett 21(15):4503–4506

    Article  CAS  PubMed  Google Scholar 

  • Nakano S et al (2013) Simultaneous detection of ATP and GTP by covalently linked fluorescent Ribonucleopeptide sensors. J Am Chem Soc 135(9):3465–3473

    Article  CAS  PubMed  Google Scholar 

  • Nakano S et al (2017) A diversity-oriented library of fluorophore-modified receptors constructed from a chemical library of synthetic fluorophores. Chembiochem 18(22):2212–2216

    Article  CAS  PubMed  Google Scholar 

  • Nakata E, Fong LF, Chisana U, Shigeki K, Yasuo M, Yousuke K, Masayuki E, Hiroshi S, Takashi M (2012) Zinc-finger proteins for site-specific protein positioning on DNA-origami structures. Angew Chem Int Ed 51(10):2421–2424

    Article  CAS  Google Scholar 

  • Ngo TA et al (2014) A protein adaptor to locate a functional protein dimer on molecular switchboard. Methods 67(2):142–150

    Article  CAS  PubMed  Google Scholar 

  • Ngo TA et al (2016) Spatially organized enzymes drive cofactor-coupled Cascade reactions. J Am Chem Soc 138(9):3012–3021

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TM et al (2017) Design of modular protein tags for orthogonal covalent bond formation at specific DNA sequences. J Am Chem Soc 139(25):8487–8496

    Article  CAS  PubMed  Google Scholar 

  • Pabo CO, Sauer RT (1992) Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095

    Article  CAS  PubMed  Google Scholar 

  • Palmer CR et al (1995) DNA bending and binding by metallo-zipper models of bZIP proteins. J Am Chem Soc 117(35):8899–8907

    Article  CAS  Google Scholar 

  • Rajendran A et al (2011) Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano 5(1):665–671

    Article  CAS  PubMed  Google Scholar 

  • Rajendran A, Endo M, Sugiyama H (2012a) DNA origami: synthesis and self-Assembly, current protocols in nucleic acid chemistry. Wiley

    Google Scholar 

  • Rajendran A, Endo M, Sugiyama H (2012b) Single-molecule analysis using DNA origami. Angew Chem Int Ed 51(4):874–890

    Article  CAS  Google Scholar 

  • Rajendran A et al (2014) A lock-and-key mechanism for the controllable fabrication of DNA origami structures. Chem Commun 50(63):8743–8746

    Article  CAS  Google Scholar 

  • Rajendran A et al (2017) Nucleic-acid-templated enzyme cascades. Chembiochem 18(8):696–716

    Article  CAS  PubMed  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  CAS  PubMed  Google Scholar 

  • Sanjana NE et al (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7(1):171–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S-i et al (2002) ‘Chemical approaches untangling sequence-specific DNA binding by proteins’, Chemistry – A. Eur J 8(22):5066–5071

    Article  Google Scholar 

  • Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99(2):237–247

    Article  CAS  PubMed  Google Scholar 

  • Seeman NC (2003) DNA in a material world. Nature 421(6921):427–431

    Article  PubMed  Google Scholar 

  • Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stojanovic MN, de Prada P, Landry DW (2000) Fluorescent sensors based on Aptamer self-assembly. J Am Chem Soc 122(46):11547–11548

    Article  CAS  PubMed  Google Scholar 

  • Talanian RV, McKnight CJ, Kim PS (1990) Sequence-specific DNA binding by a short peptide dimer. Science 249(4970):769–771

    Article  CAS  PubMed  Google Scholar 

  • Trads JB, Tørring T, Gothelf KV (2017) Site-selective conjugation of native proteins with DNA. Acc Chem Res 50(6):1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Vinson C et al (2002) Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22(18):6321–6335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Wang Z (2015) Engineering RNA-binding proteins with diverse activities. WIREs RNA 6(6):597–613

    Article  CAS  PubMed  Google Scholar 

  • Yang YR, Liu Y, Yan H (2015) DNA nanostructures as programmable biomolecular scaffolds. Bioconjug Chem 26(8):1381–1395

    Article  CAS  PubMed  Google Scholar 

  • Yu Z et al (2018) Pip-HoGu: an artificial assembly with cooperative DNA recognition capable of mimicking transcription factor pairs. J Am Chem Soc 140(7):2426–2429

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2021) ‘Tuning the reactivity of a substrate for SNAP-tag expands its application for recognition-driven DNA-protein Conjugation’, Chemistry – A. Eur J 27(72):18118–18128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Morii .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rajendran, A., Zhang, S., Morii, T. (2022). Functional Nucleic Acid-Protein Complexes: Application to Fluorescent Ribonucleopeptide Sensors. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics