Skip to main content

Advertisement

Log in

Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around −0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of −0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m2, whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m2. In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were −31 mA and −850 µA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  CAS  Google Scholar 

  2. Min B, Poulsen FW, Thygesen A, Angelidaki I (2012) Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly. Bioresour Technol 118:412–417

    Article  CAS  Google Scholar 

  3. Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40:5193–5199

    Article  CAS  Google Scholar 

  4. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  CAS  Google Scholar 

  5. You S, Zhao Q, Zhang J, Jiang J, Zhao S (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415

    Article  CAS  Google Scholar 

  6. Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE (2013) Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environ Sci Technol 47:2085–2091

    Article  CAS  Google Scholar 

  7. Cournet A, Bergé M, Roques C, Bergel A, Délia M-L (2010) Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa. Electrochim Acta 55:4902–4908

    Article  CAS  Google Scholar 

  8. Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813–818

    Article  CAS  Google Scholar 

  9. Powell EE, Evitts RW, Hill GA, Bolster JC (2010) A microbial fuel cell with a photosynthetic microalgae cathodic half cell coupled to a yeast anodic half cell. Energ Sources Part A Recover Util Environ Eff 33:440–448

    Article  Google Scholar 

  10. Wang X, Feng Y, Liu J, Lee H, Li C, Li N, Ren N (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25:2639–2643

    Article  CAS  Google Scholar 

  11. Juang D-F, Lee C-H, Hsueh S-C, Chou H-Y (2012) Power generation capabilities of microbial fuel cells with different oxygen supplies in the cathodic chamber. Appl Biochem Biotechnol 167:714–731

    Article  CAS  Google Scholar 

  12. González del Campo A, Cañizares P, Rodrigo MA, Fernández FJ, Lobato J (2013) Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. J Power Sources 242:638–645

    Article  Google Scholar 

  13. Oh S, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38:4900–4904

    Article  CAS  Google Scholar 

  14. Liu X-W, Sun X-F, Huang Y-X, Li D-B, Zeng RJ, Xiong L, Sheng G-P, Li W-W, Cheng Y-Y, Wang S-G, Yu H-Q (2013) Photoautotrophic cathodic oxygen reduction catalyzed by a green alga, Chlamydomonas reinhardtii. Biotechnol Bioeng 110:173–179

    Article  CAS  Google Scholar 

  15. McCormick AJ, Bombelli P, Scott AM, Philips AJ, Smith AG, Fisher AC, Howe CJ (2011) Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energ Environ Sci 4:4699–4709

    Article  CAS  Google Scholar 

  16. Zhou M, He H, Jin T, Wang H (2012) Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources 214:216–219

    Article  CAS  Google Scholar 

  17. Vega JA, Mustain WE (2010) Effect of CO2, HCO3−and CO2 3− on oxygen reduction in anion exchange membrane fuel cells. Electrochim Acta 55:1638–1644

    Article  CAS  Google Scholar 

  18. Cheng S, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour Technol 102:4468–4473

    Article  CAS  Google Scholar 

  19. Agrawal S, Sarma Y (1982) Effects of nutrients present in Bold’s basal medium on the green alga Stigeoclonium pascheri. Folia Microbiol 27:131–137

    Article  CAS  Google Scholar 

  20. Qian F, Baum M, Gu Q, Morse DE (2009) A 1.5 [small micro]L microbial fuel cell for on-chip bioelectricity generation. Lab Chip 9:3076–3081

    Article  CAS  Google Scholar 

  21. Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    Article  CAS  Google Scholar 

  22. X-y Wu, T-s Song, X-j Zhu, Wei P, Zhou C (2013) Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation. Appl Biochem Biotechnol 171:2082–2092

    Article  Google Scholar 

  23. Kim MS, Cha J, Kim DH (2012) Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens. J Microbiol Biotechnol 22:1395–1400

    Article  CAS  Google Scholar 

  24. Vologni V, Kakarla R, Angelidaki I, Min B (2013) Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions. Bioprocess Biosyst Eng 36:635–642

  25. Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180:683–694

    Article  CAS  Google Scholar 

  26. White DA, Pagarette A, Rooks P, Ali ST (2013) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25:153–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kwang-Soon Choi, Jung mi Moon, Sanath Kondaveeti and Li Na for their help in carrying this work. This study was supported by Kyung Hee University (Project Number 20110479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Booki Min.

Electronic supplementary material

Below is the link to the electronic supplementary material.

449_2014_1223_MOESM1_ESM.doc

Supplementary information: Fig. S1 Voltage and DO concentration of MFC with (a) PCPC and (b) CFBC in mechanical aerationFig. S2 MFC CFBC potentials, respective anode potentials with and without sodium bicarbonate (0, 2 and 4 g/L) supplement in algae aerated cathode

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakarla, R., Min, B. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode. Bioprocess Biosyst Eng 37, 2453–2461 (2014). https://doi.org/10.1007/s00449-014-1223-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1223-4

Keywords

Navigation