Skip to main content

Microfluidic Chip

  • Chapter
  • First Online:
Clinical Molecular Diagnostics

Abstract

Along with the development of science and technology, there are more and more detecting methods in clinic. Microfluidic chip is one of them. Microfluidic chip, a technique to control tiny amounts of liquid, has fast development in the past two or three decades. It has already been applied to detect nucleic acid, proteins, cell culture, cell selection and drug screening, and so on. It provides us an accurate, high throughput, and easy integrated platform for biomarker detection and research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manz A, Graber N, Widmer HM. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B Chem. 1990;1:244–8.

    Article  CAS  Google Scholar 

  2. Burns MA, Johnson BN, Brahmasandra SN, et al. An integrated nanoliter DNA analysis device. Science. 1998;282:484–7.

    Article  CAS  PubMed  Google Scholar 

  3. Alam MK, Koomson E, Zou H, et al. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Anal Chim Acta. 2018;31:29–65.

    Article  CAS  Google Scholar 

  4. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–9.

    Article  CAS  PubMed  Google Scholar 

  5. Dincer C, Bruch R, Kling A, et al. Multiplexed point-of-care testing—xPOCT. Trends Biotechnol. 2017;35:728–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eletxigerra U, Martinez-Perdiguero J, Merino S. Disposable microfluidic immuno-biochip for rapid electrochemical detection of tumor necrosis factor alpha biomarker. Sensors Actuators B Chem. 2015;221:1406–11.

    Article  CAS  Google Scholar 

  7. Gao R, Ko J, Cha K, et al. Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor. Biosens Bioelectron. 2015;72:230–6.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Z, Yang Y, Zeng Y, et al. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16:489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sonker M, Sahore V, Woolley AT. Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: a critical review. Anal Chim Acta. 2017;986:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shameli SM, Ren CL. Microfluidic two-dimensional separation of proteins combining temperature gradient focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Chem. 2015;87:3593–7.

    Article  CAS  PubMed  Google Scholar 

  11. Wu R, Seah YP, Wang Z. Microfluidic chip for stacking, separation and extraction of multiple DNA fragments. J Chromatogr A. 2016;1437:219–25.

    Article  CAS  PubMed  Google Scholar 

  12. Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab Chip. 2016;17:11–33.

    Article  PubMed  CAS  Google Scholar 

  13. Liao Z, Wang J, Zhang P, et al. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosens Bioelectron. 2018;121:272–80.

    Article  CAS  PubMed  Google Scholar 

  14. Liao Z, Zhang Y, Li Y, et al. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: a review. Biosens Bioelectron. 2019;126:697–706.

    Article  CAS  PubMed  Google Scholar 

  15. Cooper MA. Optical biosensors: where next and how soon? Drug Discov Today. 2006;11:1061–7.

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Fang X, Cao H, et al. Paper-based fluorescence resonance energy transfer assay for directly detecting nucleic acids and proteins. Biosens Bioelectron. 2016;80:79–83.

    Article  CAS  PubMed  Google Scholar 

  17. Chen P, Chung MT, McHugh W, et al. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano. 2015;9:4173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barani A, Paktinat H, Janmaleki M, et al. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Biosens Bioelectron. 2016;85:714–25.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.

    Article  Google Scholar 

  20. Cheng S-Y, Heilman S, Wasserman M, et al. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip. 2007;7:763–9.

    Article  CAS  PubMed  Google Scholar 

  21. Martinez AW, Phillips ST, Butte MJ, et al. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl. 2007;46:1318–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ren KN, Zhou JH, Wu HK. Materials for microfluidic chip fabrication. Acc Chem Res. 2013;46(11):2396–406.

    Article  CAS  PubMed  Google Scholar 

  23. Ruiz SA, Chen CS. Microcontact printing: a tool to pattern. Soft Matter. 2007;3:168–77.

    Article  CAS  Google Scholar 

  24. Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab Chip. 2017;17:11–33.

    Article  CAS  Google Scholar 

  25. Becker H, Gärtner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 2000;21:12–26.

    Article  CAS  PubMed  Google Scholar 

  26. Xia Y, Mrksich M, Kim E, et al. Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication. J Am Chem Soc. 1995;117:9576–7.

    Article  CAS  Google Scholar 

  27. Sim JY, Choi JH, Lim JM, et al. Microfluidic molding of photonic microparticles with engraved elastomeric membranes. Small. 2014;10:3979–85.

    Article  CAS  PubMed  Google Scholar 

  28. Huang GY, Zhou LH, Zhang QC, et al. Microfluidic hydrogels for tissue engineering. Biofabrication. 2011;3:012001.

    Article  PubMed  CAS  Google Scholar 

  29. Ullah F, Othman MBH, Javed F, et al. Classification, processing and application of hydrogels: a review. Mater Sci Eng C Mater Biol Appl. 2015;57:414–33.

    Article  CAS  PubMed  Google Scholar 

  30. Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81:7091–5.

    Article  CAS  PubMed  Google Scholar 

  31. Bruzewicz DA, Reches M, Whitesides GM. Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal Chem. 2008;80:3387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abe K, Suzuki K, Citterio D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem. 2008;80:6928–34.

    Article  CAS  PubMed  Google Scholar 

  33. Yu J, Wang S, Ge L, et al. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron. 2011;26:3284–9.

    Article  CAS  PubMed  Google Scholar 

  34. Delaney JL, Hogan CF, Tian J, et al. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem. 2011;83:1300–6.

    Article  CAS  PubMed  Google Scholar 

  35. Teh S-Y, Lin R, Hung L-H, et al. Droplet microfluidics. Lab Chip. 2008;8:198–220.

    Article  CAS  PubMed  Google Scholar 

  36. Huang H, Densmore D. Integration of microfluidics into the synthetic biology design flow. Lab Chip. 2014;14:3459–74.

    Article  CAS  PubMed  Google Scholar 

  37. Samiei E, Tabrizian M, Hoorfar M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip. 2016;16:2376–96.

    Article  CAS  PubMed  Google Scholar 

  38. Sista RS, Eckhardt AE, Srinivasan V, et al. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip. 2008;8:2188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu J, He ZY, Chen QS, Lin JM. Biochemical analysis on microfluidic chips. Trends Anal Chem. 2016;80:213–31.

    Article  CAS  Google Scholar 

  40. Guo WP, Shang YX, Pan LT, et al. Analysis of glycosylation hemoglobin by microfluidic chip-capillary electrophoresis. Shenzhen J Integ Trad Chin West Med. 2018;28:1–3.

    Google Scholar 

  41. Redman EA, Ramos-Payan M, Mellors JS, et al. Analysis of hemoglobin Glycation using microfluidic CE-MS: a rapid, mass spectrometry compatible method for assessing diabetes management. Anal Chem. 2016;88:5324–30.

    Article  CAS  PubMed  Google Scholar 

  42. Moschou D, Vourdas N, Kokkoris G, et al. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sensors Actuators B Chem. 2014;199:470–8.

    Article  CAS  Google Scholar 

  43. Strohmeier O, Laßmann S, Riedel B, et al. Multiplex genotyping of KRAS point mutations in tumor cell DNA by allele-specific real-time PCR on a centrifugal microfluidic disk segment. Microchim Acta. 2013;181:1681–8.

    Article  CAS  Google Scholar 

  44. Gan W, Gu Y, Han J, et al. Chitosan-modified filter paper for nucleic acid extraction and “in situ PCR” on a thermoplastic microchip. Anal Chem. 2017;89:3568–75.

    Article  CAS  PubMed  Google Scholar 

  45. Lund HL, Hughesman CB, Fakhfakh K, et al. Initial diagnosis of ALK-positive non-small-cell lung cancer based on analysis of ALK status utilizing droplet digital PCR. Anal Chem. 2016;88:4879–85.

    Article  CAS  PubMed  Google Scholar 

  46. Ramirez JD, Herrera G, Hernandez C, et al. Evaluation of the analytical and diagnostic performance of a digital droplet polymerase chain reaction (ddPCR) assay to detect Trypanosoma cruzi DNA in blood samples. PLoS Negl Trop Dis. 2018;12:e0007063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Orsini P, Impera L, Parciante E, et al. Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies. Diagn Pathol. 2018;13:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fang X, Chen H, Yu S, et al. Predicting viruses accurately by a multiplex microfluidic loop-mediated isothermal amplification chip. Anal Chem. 2011;83:690–5.

    Article  CAS  PubMed  Google Scholar 

  49. Fang X, Chen H, Xu L, et al. A portable and integrated nucleic acid amplification microfluidic chip for identifying bacteria. Lab Chip. 2012;12:1495–9.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan D, Kong J, Li X, et al. Colorimetric LAMP microfluidic chip for detecting three allergens: peanut, sesame and soybean. Sci Rep. 2018;8:8682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wu L, Garrido-Maestu A, Guerreiro JRL, et al. Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity. Nanoscale. 2019;11:7781–9.

    Article  CAS  PubMed  Google Scholar 

  52. Cao G, Kong J, Xing Z, et al. Rapid detection of CALR type 1 and type 2 mutations using PNA-LNA clamping loop-mediated isothermal amplification on a CD-like microfluidic chip. Anal Chim Acta. 2018;1024:123–35.

    Article  CAS  PubMed  Google Scholar 

  53. Ng JK, Liu WT. Miniaturized platforms for the detection of single-nucleotide polymorphisms. Anal Bioanal Chem. 2006;386:427–34.

    Article  CAS  PubMed  Google Scholar 

  54. Wei CW, Cheng JY, Huang CT, et al. Using a microfluidic device for 1 microl DNA microarray hybridization in 500 s. Nucleic Acids Res. 2005;33:e78.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang L, Cai Q, Wiederkehr RS, et al. Multiplex SNP genotyping in whole blood using an integrated microfluidic lab-on-a-chip. Lab Chip. 2016;16:4012–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kukhtin AC, Sebastian T, Golova J, et al. Lab-on-a-film disposable for genotyping multidrug-resistant Mycobacterium tuberculosis from sputum extracts. Lab Chip. 2019;19:1217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jung YK, Kim J, Mathies RA. Microfluidic hydrogel arrays for direct genotyping of clinical samples. Biosens Bioelectron. 2016;79:371–8.

    Article  CAS  PubMed  Google Scholar 

  58. Zhi X, Deng M, Yang H, et al. A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors. Biosens Bioelectron. 2014;54:372–7.

    Article  CAS  PubMed  Google Scholar 

  59. Bageritz J, Raddi G. Single-cell RNA sequencing with drop-seq. Methods Mol Biol. 2019;1979:73–85.

    Article  CAS  PubMed  Google Scholar 

  60. Maino N, Hauling T, Cappi G, et al. A microfluidic platform towards automated multiplexed in situ sequencing. Sci Rep. 2019;9:3542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kong SL, Li H, Tai JA, et al. Concurrent single-cell RNA and targeted DNA sequencing on an automated platform for comeasurement of genomic and transcriptomic signatures. Clin Chem. 2019;65:272–81.

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Yi L, Roper MG. Microfluidic device for the measurement of amino acid secretion dynamics from murine and human islets of langerhans. Anal Chem. 2016;88:3369–75.

    Article  CAS  PubMed  Google Scholar 

  63. Batalla P, Martin A, Lopez MA, et al. Enzyme-based microfluidic chip coupled to graphene electrodes for the detection of D-amino acid enantiomer-biomarkers. Anal Chem. 2015;87:5074–8.

    Article  CAS  PubMed  Google Scholar 

  64. Lee J, Soper SA, Murray KK. Microfluidic chips for mass spectrometry-based proteomics. J Mass Spectrom. 2009;44:579–93.

    Article  CAS  PubMed  Google Scholar 

  65. Pedde RD, Li H, Borchers CH, et al. Microfluidic-mass spectrometry interfaces for translational proteomics. Trends Biotechnol. 2017;35:954–70.

    Article  CAS  PubMed  Google Scholar 

  66. Feng X, Liu BF, Li J, et al. Advances in coupling microfluidic chips to mass spectrometry. Mass Spectrom Rev. 2015;34:535–57.

    Article  CAS  PubMed  Google Scholar 

  67. Charmet J, Arosio P, Knowles TPJ. Microfluidics for protein biophysics. J Mol Biol. 2018;430:565–80.

    Article  CAS  PubMed  Google Scholar 

  68. Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12:2118–34.

    Article  CAS  PubMed  Google Scholar 

  69. Fan R, Vermesh O, Srivastava A, et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol. 2008;26:1373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou Q, Lin Y, Zhang K, et al. Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens Bioelectron. 2018;101:146–52.

    Article  CAS  PubMed  Google Scholar 

  71. Ulum MF, Maylina L, Noviana D, et al. EDTA-treated cotton-thread microfluidic device used for one-step whole blood plasma separation and assay. Lab Chip. 2016;16:1492–504.

    Article  CAS  PubMed  Google Scholar 

  72. Cheow LF, Viswanathan R, Chin CS, et al. Multiplexed analysis of protein-ligand interactions by fluorescence anisotropy in a microfluidic platform. Anal Chem. 2014;86:9901–8.

    Article  CAS  PubMed  Google Scholar 

  73. Liu WW, Zhu Y, Fang Q. Femtomole-scale high-throughput screening of protein ligands with droplet-based thermal shift assay. Anal Chem. 2017;89:6678–85.

    Article  CAS  PubMed  Google Scholar 

  74. Choi JW, Kang DK, Park H, et al. High-throughput analysis of protein-protein interactions in picoliter-volume droplets using fluorescence polarization. Anal Chem. 2012;84:3849–54.

    Article  CAS  PubMed  Google Scholar 

  75. Srisa-Art M, Kang DK, Hong J, et al. Analysis of protein-protein interactions by using droplet-based microfluidics. Chembiochem. 2009;10:1605–11.

    Article  CAS  PubMed  Google Scholar 

  76. Yang M, Nelson R, Ros A. Toward analysis of proteins in single cells: a quantitative approach employing isobaric tags with MALDI mass spectrometry realized with a microfluidic platform. Anal Chem. 2016;88:6672–9.

    Article  CAS  PubMed  Google Scholar 

  77. Dietze C, Hackl C, Gerhardt R, et al. Chip-based electrochromatography coupled to ESI-MS detection. Electrophoresis. 2016;37:1345–52.

    Article  CAS  PubMed  Google Scholar 

  78. Kuster SK, Pabst M, Zenobi R, et al. Screening for protein phosphorylation using nanoscale reactions on microdroplet arrays. Angew Chem Int Ed Engl. 2015;54:1671–5.

    Article  PubMed  CAS  Google Scholar 

  79. Choi K, Boyacı E, Kim J, et al. A digital microfluidic interface between solid-phase microextraction and liquid chromatography–mass spectrometry. J Chromatogr A. 2016;1444:1–7.

    Article  CAS  PubMed  Google Scholar 

  80. Shih SC, Yang H, Jebrail MJ, et al. Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal Chem. 2012;84:3731–8.

    Article  CAS  PubMed  Google Scholar 

  81. Jebrail MJ, Yang H, Mudrik JM, et al. A digital microfluidic method for dried blood spot analysis. Lab Chip. 2011;11:3218–24.

    Article  CAS  PubMed  Google Scholar 

  82. Ng AH, Uddayasankar U, Wheeler AR. Immunoassays in microfluidic systems. Anal Bioanal Chem. 2010;397:991–1007.

    Article  CAS  PubMed  Google Scholar 

  83. Henares TG, Mizutani F, Hisamoto H. Current development in microfluidic immunosensing chip. Anal Chim Acta. 2008;611:17–30.

    Article  CAS  PubMed  Google Scholar 

  84. Barbosa AI, Reis NM. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst. 2017;142:858–82.

    Article  CAS  PubMed  Google Scholar 

  85. Gonzalez A, Gaines M, Gallegos LY, et al. Enzyme-linked immunosorbent assays (ELISA) based on thread, paper, and fabric. Electrophoresis. 2018;39:476–84.

    Article  CAS  PubMed  Google Scholar 

  86. Tang M, Wang G, Kong SK, et al. A review of biomedical centrifugal microfluidic platforms. Micromachines (Basel). 2016;7:26.

    Article  Google Scholar 

  87. Preechakasedkit P, Siangproh W, Khongchareonporn N, et al. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay. Biosens Bioelectron. 2018;102:27–32.

    Article  CAS  PubMed  Google Scholar 

  88. Yamada K, Henares TG, Suzuki K, et al. Paper-based inkjet-printed microfluidic analytical devices. Angew Chem Int Ed. 2015;54:5294–310.

    Article  CAS  Google Scholar 

  89. Machado JMD, Soares RRG, Chu V, et al. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosens Bioelectron. 2018;99:40–6.

    Article  CAS  PubMed  Google Scholar 

  90. Cui X, Liu Y, Hu D, et al. A fluorescent microbead-based microfluidic immunoassay chip for immune cell cytokine secretion quantification. Lab Chip. 2018;18:522–31.

    Article  CAS  PubMed  Google Scholar 

  91. Ng AH, Fobel R, Fobel C, et al. A digital microfluidic system for serological immunoassays in remote settings. Science translational medicine. Sci Transl Med. 2018;10:eaar6076.

    Article  PubMed  CAS  Google Scholar 

  92. Chin CD, Laksanasopin T, Cheung YK, et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med. 2011;17:1015–9.

    Article  CAS  PubMed  Google Scholar 

  93. Yap LW, Chen H, Gao Y, et al. Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay. Nanoscale. 2017;9:7822–9.

    Article  CAS  PubMed  Google Scholar 

  94. Li W, Khan M, Mao S, et al. Advances in tumor-endothelial cells co-culture and interaction on microfluidics. J Pharm Anal. 2018;8:210–8.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lee S, Kim H, Lee W, et al. Microfluidic-based cell handling devices for biochemical applications. J Micromech Microeng. 2018;28:123001.

    Article  CAS  Google Scholar 

  96. Shen Y, Yalikun Y, Tanaka Y. Recent advances in microfluidic cell sorting systems. Sensors Actuators B Chem. 2019;282:268–81.

    Article  CAS  Google Scholar 

  97. Jackson JM, Witek MA, Kamande JW, et al. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev. 2017;46:4245–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Duinen V, Trietsch SJ, Joore J, et al. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol. 2015;35:118–26.

    Article  PubMed  CAS  Google Scholar 

  99. Zhao SP, Ma Y, Lou Q, et al. Three-dimensional cell culture and drug testing in a microfluidic sidewall-attached droplet array. Anal Chem. 2017;89:10153–7.

    Article  CAS  PubMed  Google Scholar 

  100. Liu Q, Wu C, Cai H, et al. Cell-based biosensors and their application in biomedicine. Chem Rev. 2014;114:6423–61.

    Article  CAS  PubMed  Google Scholar 

  101. Halldorsson S, Lucumi E, Gomez-Sjoberg R, et al. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 2015;63:218–31.

    Article  CAS  PubMed  Google Scholar 

  102. Rothbauer M, Zirath H, Ertl P. Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab Chip. 2018;18:249–70.

    Article  CAS  PubMed  Google Scholar 

  103. Businaro L, De Ninno A, Schiavoni G, et al. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab Chip. 2013;13:229–39.

    Article  CAS  PubMed  Google Scholar 

  104. Charwat V, Rothbauer M, Tedde SF, et al. Monitoring dynamic interactions of tumor cells with tissue and immune cells in a lab-on-a-chip. Anal Chem. 2013;85:11471–8.

    Article  CAS  PubMed  Google Scholar 

  105. Zervantonakis IK, Hughes-Alford SK, Charest JL, et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci. 2012;109:13515–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Choi Y, Hyun E, Seo J, et al. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip. 2015;15:3350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zare RN, Kim S. Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng. 2010;12:187–201.

    Article  CAS  PubMed  Google Scholar 

  108. Wu H, Chen X, Gao X, et al. High-throughput generation of durable droplet arrays for single-cell encapsulation, culture, and monitoring. Anal Chem. 2018;90:4303–9.

    Article  CAS  PubMed  Google Scholar 

  109. Chen P, Yan S, Wang J, et al. Dynamic microfluidic cytometry for single-cell cellomics: high-throughput probing single-cell-resolution signaling. Anal Chem. 2019;91:1619–26.

    Article  CAS  PubMed  Google Scholar 

  110. Kim SC, Clark IC, Shahi P, et al. Single-cell RT-PCR in microfluidic droplets with integrated chemical lysis. Anal Chem. 2018;90:1273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Damiati S, Kompella UB, Damiati SA, et al. Microfluidic devices for drug delivery systems and drug screening. Genes (Basel). 2018;9:103.

    Article  CAS  Google Scholar 

  112. Rezvantalab S, Keshavarz Moraveji M. Microfluidic assisted synthesis of PLGA drug delivery systems. RSC Adv. 2019;9:2055–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tran TH, Nguyen CT, Kim DP, et al. Microfluidic approach for highly efficient synthesis of heparin-based bioconjugates for drug delivery. Lab Chip. 2012;12:589–94.

    Article  CAS  PubMed  Google Scholar 

  114. Shembekar N, Chaipan C, Utharala R, et al. Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip. 2016;16:1314–31.

    Article  CAS  PubMed  Google Scholar 

  115. Pessi J, Santos HA, Miroshnyk I, et al. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int J Pharm. 2014;472:82–7.

    Article  CAS  PubMed  Google Scholar 

  116. Riahi R, Tamayol A, Shaegh SAM, et al. Microfluidics for advanced drug delivery systems. Curr Opin Chem Eng. 2015;7:101–12.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Balbino TA, Aoki NT, Gasperini AAM, et al. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem Eng J. 2013;226:423–33.

    Article  CAS  Google Scholar 

  118. Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17:97–113.

    Article  CAS  PubMed  Google Scholar 

  119. Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today. 2016;21:1399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dong R, Liu Y, Mou L, et al. Microfluidics-based biomaterials and biodevices. Adv Mater. 2018;31:e1805033.

    Article  PubMed  CAS  Google Scholar 

  121. Wang YI, Abaci HE, Shuler ML. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017;114:184–94.

    Article  CAS  PubMed  Google Scholar 

  122. Eduati F, Utharala R, Madhavan D, et al. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat Commun. 2018;9:2434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Miller EM, Wheeler AR. A digital microfluidic approach to homogeneous enzyme assays. Anal Chem. 2008;80:1614–9.

    Article  CAS  PubMed  Google Scholar 

  124. Mross S, Pierrat S, Zimmermann T, et al. Microfluidic enzymatic biosensing systems: a review. Biosens Bioelectron. 2015;70:376–91.

    Article  CAS  PubMed  Google Scholar 

  125. Asanomi Y, Yamaguchi H, Miyazaki M, et al. Enzyme-immobilized microfluidic process reactors. Molecules. 2011;16:6041–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Urban PL, Goodall DM, Bruce NC. Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnol Adv. 2006;24:42–57.

    Article  CAS  PubMed  Google Scholar 

  127. Colin PY, Zinchenko A, Hollfelder F. Enzyme engineering in biomimetic compartments. Curr Opin Struct Biol. 2015;33:42–51.

    Article  CAS  PubMed  Google Scholar 

  128. Xu Y, Lee JH, Li Z, et al. A droplet microfluidic platform for efficient enzymatic chromatin digestion enables robust determination of nucleosome positioning. Lab Chip. 2018;18:2583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Moazami E, Perry JM, Soffer G, et al. Integration of world-to-chip interfaces with digital microfluidics for bacterial transformation and enzymatic assays. Anal Chem. 2019;91:5159–68.

    Article  CAS  PubMed  Google Scholar 

  130. Zhu Z, Yang CJ. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Acc Chem Res. 2017;50:22–31.

    Article  CAS  PubMed  Google Scholar 

  131. Kang D-K, Monsur Ali M, Zhang K, et al. Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy. TrAC Trends Anal Chem. 2014;58:145–53.

    Article  CAS  Google Scholar 

  132. Ven K, Vanspauwen B, Perez-Ruiz E, et al. Target confinement in small reaction volumes using microfluidic technologies: a smart approach for single-entity detection and analysis. ACS Sens. 2018;3:264–84.

    Article  CAS  PubMed  Google Scholar 

  133. Joensson HN, Andersson Svahn H. Droplet microfluidics—a tool for single-cell analysis. Angew Chem Int Ed Engl. 2012;51:12176–92.

    Article  CAS  PubMed  Google Scholar 

  134. Leng X, Zhang W, Wang C, et al. Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Lab Chip. 2010;10:2841–3.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang H, Jenkins G, Zou Y, et al. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics. Anal Chem. 2012;84:3599–606.

    Article  CAS  PubMed  Google Scholar 

  136. Li X, Zhang D, Zhang H, et al. Microwell array method for rapid generation of uniform agarose droplets and beads for single molecule analysis. Anal Chem. 2018;90:2570–7.

    Article  CAS  PubMed  Google Scholar 

  137. Duan BK, Cavanagh PE, Li X, et al. Ultrasensitive single-molecule enzyme detection and analysis using a polymer microarray. Anal Chem. 2018;90:3091–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueen Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 People's Medical Publishing House Co. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, X. (2021). Microfluidic Chip. In: Pan, S., Tang, J. (eds) Clinical Molecular Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-16-1037-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1037-0_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1036-3

  • Online ISBN: 978-981-16-1037-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics