Skip to main content

Trends in Bio-Derived Biomaterials in Tissue Engineering

  • Chapter
  • First Online:
Biomaterials in Tissue Engineering and Regenerative Medicine

Abstract

Biomaterials have become indispensable for tissue engineering applications including the development of artificial grafts, implantable devices and drug delivery systems. Amongst all, the biomaterials derived from natural resources, generally termed as “bio-derived biomaterials” present a sustainable and greener route for developing scaffolds and implants for artificial grafts, with wide scope of processing them into tailor made supplies. Such materials are often preferred over synthetic counterparts owing to their physiological relevance, inherent cell–material interactions and biocompatible properties. The nature holds a great treasure of numerous such materials that have been extensively utilized for regenerative therapeutics since ages. The bio-derived biomaterials can be obtained from microorganisms, plants, marine creatures and animals. Being nature derived, these materials can mimic the structural and functional aspects of the human tissues. The present book chapter gives a brief overview of the bio-derived biomaterials ranging from microbial derived biomaterials to animals/plants derived proteins and polysaccharide-based biopolymers. Animal origin biomaterials such as collagen, gelatin, fibrin and hyaluronans have contributed significantly to the success of tissue engineering so far. Special coverage has been laid on decellularized extracellular matrix and its tissue regenerative properties highlighting the role of nature’s template in engineering bioactive constructs. Additionally, insect derived silk and chitosan-based materials are also briefly described along with a few polysaccharides such as alginates, agarose and carrageenan extracted form algae and marine seaweeds. Furthermore, microbial derived biomaterials have been discussed with a few representative model biopolymers, underlining their biosynthesis, purification and their biocompatible properties that make them versatile to aid tissue recovery and/or replace their functionality. These biomaterials provide an impressive 3-dimensional microenvironment to culture living cells while supporting guided differentiation, extracellular matrix secretion and tissue regeneration. With an aim to highlight the role of bio-derived biomaterials in tissue engineering applications and allied fields, the present book chapter provides an insight into their progress in healthcare market and future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

three-dimensional

γ-PGA:

poly (γ-glutamic acid)

ε-PL:

poly (ε-L-lysine)

BC :

bacterial cellulose

CaCl2:

calcium chloride

Ca(PO4)2:

calcium phosphate

ChitoMA :

chitosan oligomer methacrylate

CRG :

carrageenan

CS :

chondroitin sulphate

DECM :

decellularized extracellular matrix

ECM :

extracellular matrix

EDTA :

ethylene diamine tetra acetic acid

FDA :

food and drug administration

FGF-2 :

fibroblast growth factor

GAGs:

glycosaminoglycans

GelMA :

gelatin methacrylamide

HA :

hyaluronic acid

Hap:

hydroxyapatite

LDV :

Leu-Asp-Val

NMSF :

non-mulberry silk fibroin

PEG :

polyethylene glycol

PHA :

polyhydroxyalkanoates

PHB :

polyhydroxy butyrate

PHBV :

3-hydroxybutyrate-co-3-hydroxyvalerate

P4HB :

4-hydroxybutyrate

RDT :

recombinant DNA technology

RGD :

Arg-Gly-Asp

rhBMP-2 :

recombinant human bone morphogenetic protein 2

SF :

silk fibroin

SS :

silk sericin

TGF-β3:

transforming growth factor-beta3

TiO2:

titanium dioxide

VEGF :

vascular endothelial growth factor

References

  • Aderibigbe BA, Buyana B (2018) Alginate in wound dressings. Pharmaceutics 10:42

    Article  PubMed Central  CAS  Google Scholar 

  • Ahangari N, Kargozar S, Ghayour-Mobarhan M et al (2019) Curcumin in tissue engineering: A traditional remedy for modern medicine. Biofactors 45:135–151

    Article  CAS  PubMed  Google Scholar 

  • Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  PubMed  Google Scholar 

  • Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays 4:133–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson LA, Islam MA, Prather KLJ (2018) Synthetic biology strategies for improving microbial synthesis of "green" biopolymers. J Biol Chem 293:5053–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando T, Yamazoe H, Moriyasu K et al (2007) Induction of dopamine-releasing cells from primate embryonic stem cells enclosed in agarose microcapsules. Tissue Eng 13:2539–2547

    Article  CAS  PubMed  Google Scholar 

  • Andorko JI, Jewell CM (2017) Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Transl Med 2:139–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Awang Junaidi AH, Abu Bakar MZ, Noordin MM et al (2007) Mineral composition of the cockle (Anadara granosa) shells of west coast of peninsular Malaysia and it’s potential as biomaterial for use in bone repair. J Anim Vet Adv 6:591–594

    Google Scholar 

  • Azhim A, Yamagami K, Muramatsu K et al (2011) The use of sonication treatment to completely decellularize blood arteries: a pilot study. Conf Proc IEEE Eng Med Biol Soc 2011:2468–2471

    CAS  Google Scholar 

  • Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF (2019) Extracellular matrix and the immune system: friends or foes. Nat Rev Urol 16:389–390

    Article  PubMed  Google Scholar 

  • Báez J, Olsen D, Polarek JW (2005) Recombinant microbial systems for the production of human collagen and gelatin. Appl Microbiol Biotechnol 69:245–252

    Article  PubMed  CAS  Google Scholar 

  • Bai R, Tian L, Li Y et al (2019) Combining ECM hydrogels of cardiac bioactivity with stem cells of high cardiomyogenic potential for myocardial repair. Stem Cells Int 2019:6708435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balaji S, Kumar R, Sripriya R et al (2012) Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications. Mater Sci Eng C 32:975–982

    Article  CAS  Google Scholar 

  • Balázsi C, Wéber F, Kövér Z et al (2007) Preparation of calcium–phosphate bioceramics from natural resources. J Eur Ceram Soc 27:1601–1606

    Article  CAS  Google Scholar 

  • Barua E, Deoghare AB, Deb P et al (2018) Naturally derived biomaterials for development of composite bone scaffold: A review. IOP Conf Ser Mater Sci Eng 377:012013

    Article  Google Scholar 

  • Bhardwaj N, Sow WT, Devi D et al (2015) Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Integr Biol 7:53–63

    Article  CAS  Google Scholar 

  • Bhardwaj N, Chouhan D, Mandal BB (2017) Tissue engineered skin and wound healing: current strategies and future directions. Curr Pharm Des 23:3455–3482

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj N, Chouhan D, Mandal BB (2018) In: Deng Y, Kuiper J (eds) 14 - 3D functional scaffolds for skin tissue engineering. Functional 3D Tissue Engineering Scaffolds. Woodhead Publishing, Sawston, UK, pp 345–365

    Chapter  Google Scholar 

  • Bhunia BK, Mandal BB (2019) Exploring gelation and physicochemical behavior of in situ bioresponsive silk hydrogels for disc degeneration therapy. ACS Biomater Sci Eng 5:870–886

    Article  CAS  PubMed  Google Scholar 

  • Bhunia BK, Kaplan DL, Mandal BB (2018) Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc. Proc Natl Acad Sci U S A 115:477–482

    Article  CAS  PubMed  Google Scholar 

  • Biazar E, Najafi M, Heidari S et al (2018) 3D bio-printing technology for body tissues and organs regeneration. J Medl Eng Technol 42:1–16

    Google Scholar 

  • Boccafoschi F, Botta M, Fusaro L et al (2017) Decellularized biological matrices: an interesting approach for cardiovascular tissue repair and regeneration. J Tissue Eng Regen Med 11:1648–1657

    Article  CAS  PubMed  Google Scholar 

  • Borkenhagen M, Stoll RC, Neuenschwander P et al (1998) In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials 19:2155–2165

    Article  CAS  PubMed  Google Scholar 

  • Bragulla HH, Homberger DG (2009) Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214:516–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauer E, Lippens E, Klein O et al (2019) Collagen fibrils mechanically contribute to tissue contraction in an in vitro wound healing scenario. Adv Sci 6:1801780

    Article  CAS  Google Scholar 

  • Buescher JM, Margaritis A (2007) Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol 27:1–19

    Article  CAS  PubMed  Google Scholar 

  • Burke JF, Yannas IV, Quinby WC et al (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194:413–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett LR, Rahmany MB, Richter JR et al (2013) Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials 34:2632–2640

    Article  CAS  PubMed  Google Scholar 

  • Cacicedo ML, Castro MC, Servetas I et al (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol 213:172–180

    Article  CAS  PubMed  Google Scholar 

  • Campo V, Kawano D, Silva D et al (2009) Carrageenans: biological properties, chemical modifications and structural analysis – A review. Carbohydr Polym 77:167–180

    Article  CAS  Google Scholar 

  • Caralt M, Uzarski JS, Iacob S et al (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant 15:64–75

    Article  CAS  PubMed  Google Scholar 

  • Carmagnola I, Ranzato E, Chiono V (2018) 11- scaffold functionalization to support a tissue biocompatibility. In: Deng Y, Kuiper J (eds) Functional 3D tissue engineering scaffolds. Woodhead Publishing, Cambridge, UK, pp 255–277

    Chapter  Google Scholar 

  • Carvalho IC, Mansur HS (2017) Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration. Mater Sci Eng C 78:690–705

    Article  CAS  Google Scholar 

  • Chan RTH, Marçal H, Ahmed T et al (2013) Poly(ethylene glycol)-modulated cellular biocompatibility of polyhydroxyalkanoate films. Polym Int 62:884–892

    Article  CAS  Google Scholar 

  • Chan RTH, Russell RA, Marçal H et al (2014) BioPEGylation of polyhydroxybutyrate promotes nerve cell health and migration. Biomacromolecules 15:339–349

    Article  CAS  PubMed  Google Scholar 

  • Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110:621–632

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi K, Ganguly K, Kulkarni AR et al (2013) Ultra-small fluorescent bile acid conjugated PHB–PEG block copolymeric nanoparticles: synthesis, characterization and cellular uptake. RSC Adv 3:7064–7070

    Article  CAS  Google Scholar 

  • Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Chen LJ, Wang M (2002) Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials 23:2631–2639

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Asada Y, Aida T (1989) Production of γ-polyglutamic acid by bacillus licheniformis a35 under denitrifying conditions. Agric Biol Chem 53:2369–2375

    CAS  Google Scholar 

  • Cheng S, Chen GQ, Leski M et al (2006) The effect of d,l-β-hydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 27:3758–3765

    Article  CAS  PubMed  Google Scholar 

  • Chevallay B, Herbage D (2000) Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput 38:211–218

    Article  CAS  PubMed  Google Scholar 

  • Chircov C, Grumezescu AM, Bejenaru LE (2018) Hyaluronic acid-based scaffolds for tissue engineering. Rom J Morphol Embryol 59:71–76

    PubMed  Google Scholar 

  • Choi HJ, Kunioka M (1995) Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid). Radiat Phys Chem 46:175–179

    Article  CAS  Google Scholar 

  • Choi JS, Kim BS, Kim JY et al (2011) Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res A 97:292–299

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Mandal BB (2020) Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater 103:24–51

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Chakraborty B, Nandi SK et al (2017) Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater 48:157–174

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Janani G, Chakraborty B et al (2018a) Functionalized PVA-silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling. J Tissue Eng Regen Med 12:e1559–e1570

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Lohe TU, Samudrala PK et al (2018b) In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds. Adv Healthc Mater 7:e1801092

    Article  PubMed  CAS  Google Scholar 

  • Chouhan D, Thatikonda N, Nileback L et al (2018c) Recombinant spider silk functionalized silkworm silk matrices as potential bioactive wound dressings and skin grafts. ACS Appl Mater Interfaces 10:23560–23572

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Das P, Thatikonda N et al (2019a) Silkworm silk matrices coated with functionalized spider silk accelerate healing of diabetic wounds. ACS Biomater Sci Eng 5:3537–3548

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Dey N, Bhardwaj N et al (2019b) Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 216:119267

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Lohe TU, Thatikonda N et al (2019c) Silkworm silk scaffolds functionalized with recombinant spider silk containing a fibronectin motif promotes healing of full-thickness burn wounds. ACS Biomater Sci Eng 5:4634–4645

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Mehrotra S, Majumder O et al (2019d) Magnetic actuator device assisted modulation of cellular behavior and tuning of drug release on silk platform. ACS Biomater Sci Eng 5:92–105

    Article  CAS  PubMed  Google Scholar 

  • Chronakis I, Doublier J, Piculell L (2000) Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. Int J Biol Macromol 28:1–14

    Article  CAS  PubMed  Google Scholar 

  • Clark RA (2001) Fibrin and wound healing. Ann N Y Acad Sci 936:355–367

    Article  CAS  PubMed  Google Scholar 

  • Clark RA, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Invest Dermatol 127:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Contessi Negrini N, Lipreri MV, Tanzi MC et al (2020) In vitro cell delivery by gelatin microspheres prepared in water-in-oil emulsion. J Mater Sci Mater Med 31:26

    Article  CAS  PubMed  Google Scholar 

  • Copes F, Pien N, Van Vlierberghe S et al (2019) Collagen-based tissue engineering strategies for vascular medicine. Front Bioeng Biotechnol 7:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Cramer MC, Badylak SF (2019) Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann Biomed Eng 48:2132–2153

    Article  PubMed  PubMed Central  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  • Cunha L, Grenha A (2016) Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 14:42

    Article  PubMed Central  CAS  Google Scholar 

  • Currie LJ, Sharpe JR, Martin R (2001) The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast Reconstr Surg 108:1713–1726

    Article  CAS  PubMed  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S et al (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151

    Article  CAS  PubMed  Google Scholar 

  • DeFrates KG, Moore R, Borgesi J et al (2018) Protein-based fiber materials in medicine: a review. Nanomaterials 8:457

    Article  PubMed Central  CAS  Google Scholar 

  • Echave MC, Saenz del Burgo L, Pedraz JL et al (2017) Gelatin as biomaterial for tissue engineering. Curr Pharm Des 23:3567–3584

    Article  CAS  PubMed  Google Scholar 

  • Edgar L, Altamimi A, García Sánchez M et al (2018) Utility of extracellular matrix powders in tissue engineering. Organogenesis 14:172–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elder BD, Eleswarapu SV, Athanasiou KA (2009) Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials 30:3749–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eslahi N, Mahmoodi A, Mahmoudi N et al (2020) Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polym Rev 60:144–170

    Article  CAS  Google Scholar 

  • Farag A, Vaquette C, Theodoropoulos C et al (2014) Decellularized periodontal ligament cell sheets with recellularization potential. J Dent Res 93:1313–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Pérez J, Ahearne M (2019) The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep 9:14933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foox M, Zilberman M (2015) Drug delivery from gelatin-based systems. Expert Opin Drug Deliv 12:1547–1563

    Article  PubMed  CAS  Google Scholar 

  • Forouzesh F, Rabbani M, Bonakdar S (2019) A comparison between ultrasonic bath and direct sonicator on osteochondral tissue decellularization. J Med Signals Sens 9:227–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freier T, Kunze C, Nischan C et al (2002) In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials 23:2649–2657

    Article  CAS  PubMed  Google Scholar 

  • Fu RH, Wang YC, Liu SP et al (2014) Decellularization and recellularization technologies in tissue engineering. Cell Transplant 23:621–630

    Article  PubMed  Google Scholar 

  • Gao C, Wan Y, Yang C et al (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18:139–145

    Article  CAS  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan — a review. J Control Release 114:1–14

    Article  CAS  PubMed  Google Scholar 

  • George B, Suchithra TV (2019) Plant-derived bioadhesives for wound dressing and drug delivery system. Fitoterapia 137:104241

    Article  CAS  PubMed  Google Scholar 

  • Gershlak JR, Hernandez S, Fontana G et al (2017) Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 125:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilotra S, Chouhan D, Bhardwaj N et al (2018) Potential of silk sericin based nanofibrous mats for wound dressing applications. Mater Sci Eng C 90:420–432

    Article  CAS  Google Scholar 

  • Gilpin A, Yang Y (2017) Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int 2017:9831534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giuliani A, Manescu A, Larsson E et al (2014) In vivo regenerative properties of coralline-derived (biocoral) scaffold grafts in human maxillary defects: demonstrative and comparative study with beta-tricalcium phosphate and biphasic calcium phosphate by synchrotron radiation x-ray microtomography. Clin Implant Dent Relat Res 16:736–750

    Article  PubMed  Google Scholar 

  • Goecke T, Theodoridis K, Tudorache I et al (2018) In vivo performance of freeze-dried decellularized pulmonary heart valve Allo- and xenografts orthotopically implanted into juvenile sheep. Acta Biomater 68:41–52

    Article  PubMed  Google Scholar 

  • Goissis G, de Fátima Giglioti A, Braile DM (2011) Preparation and characterization of an acellular bovine pericardium intended for manufacture of valve bioprostheses. Artif Organs 35:484–489

    Article  CAS  PubMed  Google Scholar 

  • Gong YY, Xue JX, Zhang WJ et al (2011) A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 32:2265–2273

    Article  CAS  PubMed  Google Scholar 

  • Guillemin G, Patat JL, Fournie J et al (1987) The use of coral as a bone graft substitute. J Biomed Mater Res 21:557–567

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Sun W, Kim JP et al (2018) Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater 72:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Mita K, Arunkumar KP et al (2015) Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama. Sci Rep 5:12706

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Dinda A, Mishra N (2017) Antibacterial activity and composition of decellularized goat lung extracellular matrix for its tissue engineering applications. Biol Eng Med 2:1–7

    Article  Google Scholar 

  • Han S, Ham TR, Haque S et al (2015) Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 23:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath DE (2019) A review of decellularized extracellular matrix biomaterials for regenerative engineering applications. Regener Eng Translat Med 5:155–166

    Article  CAS  Google Scholar 

  • Henrotin Y, Mathy M, Sanchez C et al (2010) Chondroitin sulfate in the treatment of osteoarthritis: from in vitro studies to clinical recommendations. Ther Adv Musculoskelet Dis 2:335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland C, Numata K, Rnjak-Kovacina J et al (2019) The biomedical use of silk: past, present, future. Adv Healthc Mater 8:e1800465

    Article  PubMed  CAS  Google Scholar 

  • Hong H, Stegemann JP (2008) 2D and 3D collagen and fibrin biopolymers promote specific ECM and integrin gene expression by vascular smooth muscle cells. J Biomater Sci Polym Ed 19:1279–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard D, Buttery LD, Shakesheff KM et al (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh CY, Tsai SP, Wang DM et al (2005) Preparation of γ-PGA/chitosan composite tissue engineering matrices. Biomaterials 26:5617–5623

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CY, Hsieh HJ, Liu HC et al (2006) Fabrication and release behavior of a novel freeze-gelled chitosan/γ-PGA scaffold as a carrier for rhBMP-2. Dent Mater 22:622–629

    Article  CAS  PubMed  Google Scholar 

  • Hsu RS, Chen PY, Fang JH et al (2019) Adaptable microporous hydrogels of propagating ngf-gradient by injectable building blocks for accelerated axonal outgrowth. Adv Sci 6:1900520

    Article  CAS  Google Scholar 

  • Hu X, Cebe P, Weiss AS et al (2012) Protein-based composite materials. Mater Today 15:208–215

    Article  CAS  Google Scholar 

  • Huang S, Fu X (2010) Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release 142:149–159

    Article  CAS  PubMed  Google Scholar 

  • Hussey GS, Dziki JL, Badylak SF (2018) Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 3:159–173

    Article  CAS  Google Scholar 

  • Im AR, Kim JY, Kim HS et al (2013) Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles. Nanotechnology 24:395102

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto M, Kurachi M, Nakashima T et al (2005) Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett 579:4423–4429

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Takagi T, Amemiya H et al (1992) Agarose for a bioartificial pancreas. J Biomed Mater Res 26:967–977

    Article  CAS  PubMed  Google Scholar 

  • Janani G, Nandi SK, Mandal BB (2018) Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Biomater 67:167–182

    Article  CAS  PubMed  Google Scholar 

  • Janani G, Kumar M, Chouhan D et al (2019) Insight into silk-based biomaterials: from physicochemical attributes to recent biomedical applications. ACS Appl Bio Mater 2:5460–5491

    Article  CAS  PubMed  Google Scholar 

  • Jansen KA, Atherton P, Ballestrem C (2017) Mechanotransduction at the cell-matrix interface. Semin Cell Dev Biol 71:75–83

    Article  CAS  PubMed  Google Scholar 

  • Jewell M, Daunch W, Bengtson B et al (2015) The development of SERI® surgical scaffold, an engineered biological scaffold. Ann N Y Acad Sci 1358:44–55

    Article  CAS  PubMed  Google Scholar 

  • Jo J, Okazaki A, Nagane K et al (2010) Preparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells. J Biomater Sci Polym Ed 21:185–204

    Article  CAS  PubMed  Google Scholar 

  • Jovic TH, Kungwengwe G, Mills AC et al (2019) Plant-derived biomaterials: a review of 3D bioprinting and biomedical applications. Front Mech Eng 5:19

    Article  Google Scholar 

  • Kang IK, Kim JC (2008) Electrospun composite nanofibrous scaffolds for tissue engineering. In: Biomaterials in Asia. World Scientific, Singapore, pp 194–206

    Chapter  Google Scholar 

  • Katti DS, Lakshmi S, Langer R et al (2002) Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54:933–961

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Sarma MK, Thungon PD et al (2016) Thin films of silk fibroin and its blend with chitosan strongly promote biofilm growth of Synechococcus sp. BDU 140432. J Colloid Interface Sci 479:251–259

    Article  CAS  PubMed  Google Scholar 

  • Keane TJ, Badylak SF (2014) Biomaterials for tissue engineering applications. Semin Pediatr Surg 23:112–118

    Article  PubMed  Google Scholar 

  • Keane TJ, Swinehart IT, Badylak SF (2015) Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84:25–34

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Ullah H, Ul-Islam M et al (2017) Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv 7:47662–47668

    Article  CAS  Google Scholar 

  • Khalil IR, Burns AT, Radecka I et al (2017) Bacterial-derived polymer poly-y-glutamic acid (y-pga)-based micro/nanoparticles as a delivery system for antimicrobials and other biomedical applications. Int J Mol Sci 18:313

    Article  PubMed Central  CAS  Google Scholar 

  • Kim YS, Majid M, Melchiorri AJ et al (2019) Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med 4:83–95

    Article  PubMed  Google Scholar 

  • Korkusuz F, Korkusuz P, Ekşioĝlu F et al (2001) In vivo response to biodegradable controlled antibiotic release systems. J Biomed Mater Res 55:217–228

    Article  CAS  PubMed  Google Scholar 

  • Kowalska-Ludwicka K, Cala J, Grobelski B et al (2013) Special paper – new methods modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Gupta P, Bhattacharjee S et al (2018) Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization. Biomaterials 187:1–17

    Article  CAS  PubMed  Google Scholar 

  • Kunioka M (2004) Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Macromol Biosci 4:324–329

    Article  CAS  PubMed  Google Scholar 

  • Kurisawa M, Chung JE, Yang YY et al (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Comm 34:4312–4314

    Article  CAS  Google Scholar 

  • Lamboni L, Gauthier M, Yang G et al (2015) Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol Adv 33:1855–1867

    Article  CAS  PubMed  Google Scholar 

  • Landry MJ, Rollet FG, Kennedy TE et al (2018) Layers and multilayers of self-assembled polymers: tunable engineered extracellular matrix coatings for neural cell growth. Langmuir 34:8709–8730

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee A, Hudson AR, Shiwarski DJ et al (2019a) 3D bioprinting of collagen to rebuild components of the human heart. Science 365:482

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Jung H, Park N et al (2019b) Induced osteogenesis in plants decellularized scaffolds. Sci Rep 9:20194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD et al (1999) Survival and function of bioengineered cardiac grafts. Circulation 100:i63–i69

    Article  Google Scholar 

  • Liang Y, Kiick KL (2014) Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 10:1588–1600

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Mao J, Yao K et al (2004) A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed 15:25–40

    Article  CAS  PubMed  Google Scholar 

  • Llames SG, Del Rio M, Larcher F et al (2004) Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation 77:350–355

    Article  PubMed  Google Scholar 

  • Londono R, Badylak SF (2015) Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng 43:577–592

    Article  PubMed  Google Scholar 

  • Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym Rev 49:226–248

    Article  CAS  Google Scholar 

  • Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Mak WC, Olesen K, Sivlér P et al (2015) Controlled delivery of human cells by temperature responsive microcapsules. J Funct Biomater 6:439–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano JF, Silva GA, Azevedo HS et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino D, Luginbuhl J, Scola S et al (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6:221ra214

    Article  CAS  Google Scholar 

  • Martin P (1997) Wound healing--aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 16:97–105

    Article  CAS  Google Scholar 

  • Matsusaki M, Akashi M (2005) Novel functional biodegradable polymer iv: ph-sensitive controlled release of fibroblast growth factor-2 from a poly(γ-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules 6:3351–3356

    Article  CAS  PubMed  Google Scholar 

  • Matsusaki M, Serizawa T, Kishida A et al (2002) Novel functional biodegradable polymer: synthesis and anticoagulant activity of poly(γ-glutamic acid)sulfonate (γ-PGA-sulfonate). Bioconjug Chem 13:23–28

    Article  CAS  PubMed  Google Scholar 

  • Matsusaki M, Serizawa T, Kishida A et al (2005) Novel functional biodegradable polymer ii: fibroblast growth factor-2 activities of poly(γ-glutamic acid)-sulfonate. Biomacromolecules 6:400–407

    Article  CAS  PubMed  Google Scholar 

  • Meezan E, Hjelle JT, Brendel K et al (1975) A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci 17:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Nandi SK, Mandal BB (2017) Stacked silk-cell monolayers as a biomimetic three dimensional construct for cardiac tissue reconstruction. J Mater Chem B 5:6325–6338

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Chouhan D, Konwarh R et al (2019) Comprehensive review on silk at nanoscale for regenerative medicine and allied applications. ACS Biomater Sci Eng 5:2054–2078

    Article  CAS  PubMed  Google Scholar 

  • Meyer M (2019) Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 18:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Mizuno K, Yamamura K, Yano K et al (2003) Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res A 64:177–181

    Article  PubMed  CAS  Google Scholar 

  • Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463:127–136

    Article  PubMed  CAS  Google Scholar 

  • Mogosanu GD, Grumezescu AM, Chifiriuc MC (2014) Keratin-based biomaterials for biomedical applications. Curr Drug Targets 15:518–530

    Article  CAS  PubMed  Google Scholar 

  • Mokhtarzadeh A, Alibakhshi A, Hejazi M et al (2016) Bacterial-derived biopolymers: advanced natural nanomaterials for drug delivery and tissue engineering. TrAC Trends Anal Chem 82:367–384

    Article  CAS  Google Scholar 

  • Moses JC, Nandi SK, Mandal BB (2018) Multifunctional cell instructive silk-bioactive glass composite reinforced scaffolds toward osteoinductive, proangiogenic, and resorbable bone grafts. Adv Healthc Mater 7:e1701418

    Article  PubMed  CAS  Google Scholar 

  • Muntimadugu E, Ickowicz DE, Domb AJ et al (2013) Polysaccharide biomaterials. Isr J Chem 53:787–794

    CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Neuman MG, Nanau RM, Oruña-Sanchez L et al (2015) Hyaluronic acid and wound healing. J Pharm Pharm Sci 18:53–60

    Article  CAS  PubMed  Google Scholar 

  • Nigmatullin R, Thomas P, Lukasiewicz B et al (2015) Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol 90:1209–1221

    Article  CAS  Google Scholar 

  • Nikkhah M, Akbari M, Paul A et al (2016) Gelatin-based biomaterials for tissue engineering and stem cell bioengineering. In: Neves NM, Reis RL (eds) Biomaterials from nature for advanced devices and therapies. Wiley, Hoboken, NJ, pp 37–62

    Chapter  Google Scholar 

  • Nileback L, Chouhan D, Jansson R et al (2017) Silk-silk interactions between silkworm fibroin and recombinant spider silk fusion proteins enable the construction of bioactive materials. ACS Appl Mater Interfaces 9:31634–31644

    Article  PubMed  CAS  Google Scholar 

  • Ninan G, Joseph J, Aliyamveettil ZA (2014) A comparative study on the physical, chemical and functional properties of carp skin and mammalian gelatins. J Food Sci Technol 51:2085–2091

    Article  CAS  PubMed  Google Scholar 

  • Noh YK, Du P, Kim IG et al (2016) Polymer mesh scaffold combined with cell-derived ECM for osteogenesis of human mesenchymal stem cells. Biomater Res 20:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noor N, Shapira A, Edri R et al (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6:1900344

    Article  CAS  Google Scholar 

  • Nourmohammadi J, Roshanfar F, Farokhi M et al (2017) Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Mater Sci Eng C 76:951–958

    Article  CAS  Google Scholar 

  • O'Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95

    Article  CAS  Google Scholar 

  • Oliveira Barud HG, Barud HS, Cavicchioli M et al (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51

    Article  CAS  PubMed  Google Scholar 

  • O'Neill JD, Anfang R, Anandappa A et al (2013) Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 96:1046–1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Otani Y, Tabata Y, Ikada Y (1996) Rapidly curable biological glue composed of gelatin and poly(l-glutamic acid). Biomaterials 17:1387–1391

    Article  CAS  PubMed  Google Scholar 

  • Otani Y, Tabata Y, Ikada Y (1998) Hemostatic capability of rapidly curable glues from gelatin, poly(L-glutamic acid), and carbodiimide. Biomaterials 19:2091–2098

    Article  CAS  PubMed  Google Scholar 

  • Otani Y, Tabata Y, Ikada Y (1999) Sealing effect of rapidly curable gelatin-poly (L-glutamic acid) hydrogel glue on lung air leak. Ann Thorac Surg 67:922–926

    Article  CAS  PubMed  Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Yan S, Gao JJ et al (2016) In-vivo organ engineering: perfusion of hepatocytes in a single liver lobe scaffold of living rats. Int J Biochem Cell Biol 80:124–131

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Yang HJ, Woo DG et al (2010) Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-beta 3 complexed with chondroitin sulfate. J Biomed Mater Res A 92:806–816

    PubMed  Google Scholar 

  • Pérez-Camero G, Congregado F, Bou JJ et al (1999) Biosynthesis and ultrasonic degradation of bacterial poly(γ-glutamic acid). Biotechnol Bioeng 63:110–115

    Article  PubMed  Google Scholar 

  • Portela R, Leal CR, Almeida PL et al (2019) Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 12:586–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price RD, Berry MG, Navsaria HA (2007) Hyaluronic acid: the scientific and clinical evidence. J Plast Reconstr Aesthetic Surg 60:1110–1119

    Article  Google Scholar 

  • Rahman MM, Netravali AN (2016) Aligned bacterial cellulose arrays as “green” nanofibers for composite materials. ACS Macro Lett 5:1070–1074

    Article  CAS  Google Scholar 

  • Recouvreux DOS, Rambo CR, Berti FV et al (2011) Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng C 31:151–157

    Article  CAS  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  CAS  PubMed  Google Scholar 

  • Rnjak-Kovacina J, Tang F, Whitelock JM et al (2018) Glycosaminoglycan and proteoglycan-based biomaterials: current trends and future perspectives. Adv Healthc Mater 7:1701042

    Article  CAS  Google Scholar 

  • Rockwood DN, Preda RC, Yucel T et al (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez DE, Romero-García J, Ramírez-Vargas E et al (2006) Synthesis and swelling characteristics of semi-interpenetrating polymer network hydrogels composed of poly(acrylamide) and poly(γ-glutamic acid). Mater Lett 60:1390–1393

    Article  CAS  Google Scholar 

  • Rodríguez-Carmona E, Villaverde A (2010) Nanostructured bacterial materials for innovative medicines. Trends Microbiol 18:423–430

    Article  PubMed  CAS  Google Scholar 

  • Roth SP, Glauche SM, Plenge A et al (2017) Automated freeze-thaw cycles for decellularization of tendon tissue - a pilot study. BMC Biotechnol 17:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruffing A, Chen RR (2006) Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb Cell Factories 5:25

    Article  CAS  Google Scholar 

  • Sarma MK, Kaushik S, Goswami P (2016) Cyanobacteria: A metabolic power house for harvesting solar energy to produce bio-electricity and biofuels. Biomass Bioenergy 90:187–201

    Article  CAS  Google Scholar 

  • Saska S, Barud H, Gaspar A et al (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawkins MJ, Bowen W, Dhadda P et al (2013) Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9:7865–7873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherner M, Reutter S, Klemm D et al (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189:340–347

    Article  CAS  PubMed  Google Scholar 

  • Schoukens G (2009) 5 - bioactive dressings to promote wound healing. In: Rajendran S (ed) Advanced textiles for wound care. Woodhead Publishing, Cambridge, UK, pp 114–152

    Chapter  Google Scholar 

  • Shelke NB, James R, Laurencin CT et al (2014) Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol 25:448–460

    Article  CAS  Google Scholar 

  • Shen YI, Song HG, Papa A et al (2015) Acellular hydrogels for regenerative burn wound healing: translation from a porcine model. J Invest Dermatol 135:2519–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229–258

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Zhu Y, Ran X et al (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192

    Article  CAS  PubMed  Google Scholar 

  • Shih IL, Van YT (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79:207–225

    Article  CAS  PubMed  Google Scholar 

  • Simsa R, Padma AM, Heher P et al (2018) Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS One 13:e0209269

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RS, Kaur N, Rana V et al (2016) Recent insights on applications of pullulan in tissue engineering. Carbohydr Polym 153:455–462

    Article  CAS  PubMed  Google Scholar 

  • Sofregen (2019) Sofregen Receives 510(k) Clearance for Silk Voice®

    Google Scholar 

  • Sood A, Granick MS, Tomaselli NL (2013) Wound dressings and comparative effectiveness data. Adv Wound Care 3:511–529

    Article  Google Scholar 

  • Srinivasan B, Kumar R, Shanmugam K et al (2010) Porous keratin scaffold–promising biomaterial for tissue engineering and drug delivery. J Biomed Mater Res Part B 92B:5–12

    Article  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  PubMed  Google Scholar 

  • Stumpf TR, Yang X, Zhang J et al (2018) In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C 82:372–383

    Article  CAS  Google Scholar 

  • Suarato G, Bertorelli R, Athanassiou A (2018) Borrowing from nature: biopolymers and biocomposites as smart wound care materials. Front Bioeng Biotechnol 6:137–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Sullivan KE, Quinn KP, Tang KM et al (2014) Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res Ther 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  • Tabesh H, Amoabediny G, Nik NS et al (2009) The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int 54:73–83

    Article  CAS  PubMed  Google Scholar 

  • Thomas SL, Kuijpers-Jagtman AM, Maltha JC (1999) The healing process of palatal tissues after operations with and without denudation of bone: an experimental study in dogs. Scand J Plast Reconstr Surg Hand Surg 33:169–176

    Article  Google Scholar 

  • Tiwari S, Patil R, Bahadur P (2018) Polysaccharide based scaffolds for soft tissue engineering applications. Polymers 11:1

    Article  PubMed Central  CAS  Google Scholar 

  • Vavken P, Joshi S, Murray MM (2009) TRITON-X is most effective among three decellularization agents for ACL tissue engineering. J Orthop Res 27:1612–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldrop FS, Puchtler H, Meloan SN et al (1980) Histochemical investigations of different types of collagen. Acta Histochem Suppl 21:23–31

    CAS  PubMed  Google Scholar 

  • Wang L, Johnson JA, Zhang Q et al (2013) Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomater 9:8921–8931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasupalli GK, Verma D (2018) 3 - polysaccharides as biomaterials. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: polymers. Woodhead Publishing, Cambridge, UK, pp 37–70

    Chapter  Google Scholar 

  • Wicha MS, Lowrie G, Kohn E et al (1982) Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci U S A 79:3213–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigren A, Falk J, Wik O (1978) The healing of cartilage injuries under the influence of joint immobilization and repeated hyaluronic acid injections: an experimental study. Acta Orthop Scand 49:121–133

    Article  CAS  PubMed  Google Scholar 

  • Wilgus TA (2012) Growth factor-extracellular matrix interactions regulate wound repair. Adv Wound Care 1:249–254

    Article  Google Scholar 

  • Wilson SL, Sidney LE, Dunphy SE et al (2016) Corneal decellularization: a method of recycling unsuitable donor tissue for clinical translation? Curr Eye Res 41:769–782

    Article  CAS  PubMed  Google Scholar 

  • Wilson SA, Cross LM, Peak CW et al (2017) Shear-thinning and thermo-reversible nanoengineered inks for 3d bioprinting. ACS Appl Mater Interfaces 9:43449–43458

    Article  CAS  PubMed  Google Scholar 

  • Winnacker M (2019) Polyhydroxyalkanoates: recent advances in their synthesis and applications. Eur J Lipid Sci Technol 121:1900101

    Article  CAS  Google Scholar 

  • Wong C, Inman E, Spaethe R et al (2003) Fibrin-based biomaterials to deliver human growth factors. Thromb Haemost 89:573–582

    Article  CAS  PubMed  Google Scholar 

  • Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26:7339–7349

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Ren J, Li J (2012) Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine. Cytotherapy 14:555–562

    Article  CAS  PubMed  Google Scholar 

  • Xiong YC, Yao YC, Zhan XY et al (2010) Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J Biomater Sci Polym Ed 21:127–140

    Article  CAS  PubMed  Google Scholar 

  • Xu CC, Chan RW, Tirunagari N (2007) A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria. Tissue Eng 13:551–566

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Ikada Y, Tabata Y (2001) Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed 12:77–88

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Liu H, Fan Y (2016) Silk scaffolds for musculoskeletal tissue engineering. Exp Biol Med (Maywood) 241:238–245

    Article  CAS  Google Scholar 

  • Yao Q, Zheng YW, Lan QH et al (2019) Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Mater Sci Eng C 104:109942

    Article  CAS  Google Scholar 

  • Yegappan R, Selvaprithiviraj V, Amirthalingam S et al (2018) Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 198:385–400

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics. Artif Organs 8:131–136

    Article  CAS  Google Scholar 

  • Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotechnol Biochem 61:219–224

    Article  CAS  Google Scholar 

  • Yusof F, Sha'ban M, Azhim A (2019) Development of decellularized meniscus using closed sonication treatment system: potential scaffolds for orthopedics tissue engineering applications. Int J Nanomedicine 14:5491–5502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaborowska M, Bodin A, Bäckdahl H et al (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547

    Article  CAS  PubMed  Google Scholar 

  • Zamani M, Khafaji M, Naji M et al (2017) A biomimetic heparinized composite silk-based vascular scaffold with sustained antithrombogenicity. Sci Rep 7:4455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zang S, Zhuo Q, Chang X et al (2014) Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose. Carbohydr Polym 104:158–165

    Article  CAS  PubMed  Google Scholar 

  • Zarrintaj P, Manouchehri S, Ahmadi Z et al (2018) Agarose-based biomaterials for tissue engineering. Carbohydr Polym 187:66–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, He Y, Bharadwaj S et al (2009) Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 30:4021–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang Z, Lin K et al (2015) In vivo regeneration of renal vessels post whole decellularized kidneys transplantation. Oncotarget 6:40433–40442

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Fritze O, Schleicher M et al (2010) Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31:2549–2554

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Li R, Wu X et al (2017) Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting. Eur Polym J 86:154–161

    Article  CAS  Google Scholar 

  • Zhu Y, Hideyoshi S, Jiang H et al (2018) Injectable, porous, biohybrid hydrogels incorporating decellularized tissue components for soft tissue applications. Acta Biomater 73:112–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimple Chouhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chouhan, D., Kaushik, S., Arora, D. (2021). Trends in Bio-Derived Biomaterials in Tissue Engineering. In: Bhaskar, B., Sreenivasa Rao, P., Kasoju, N., Nagarjuna, V., Baadhe, R.R. (eds) Biomaterials in Tissue Engineering and Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-16-0002-9_6

Download citation

Publish with us

Policies and ethics