Skip to main content

Relevance of Metatranscriptomics in Symbiotic Associations Between Plants and Rhizosphere Microorganisms

  • Chapter
  • First Online:
Microbial Metatranscriptomics Belowground

Abstract

Interaction between plant and microbes in the rhizosphere, the place of soil influenced with the aid of plant roots, are fundamental to biogeochemical cycling, plant immunity, and productivity. These interactions are properly understood, however, exceedingly little is about the plant microbiome. The study of the interactions between plants and their microbial communities in the rhizosphere is important for developing sustainable management practices and agricultural products such as biofertilizers and biopesticides. Plant roots release a broad variety of chemical compounds to attract and select microorganisms in the rhizosphere. Rhizosphere symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. Metatranscriptomics allowed the profiling of different microorganism communities and their evaluation of relative and quantitative profusion and metabolism from large number of samples. Extraction and purification of mRNA immediately from plant, decomposition of natural material and soil, accompanied with pooling of expressed genes by using high throughput sequencing, have spawned metatranscriptomics a new rising area of research. Every metatranscriptome offers a view of relative abundance and composition of genes which are actively transcribed and consequently provides the evaluation about the interaction between plant and soil microbes Metatranscriptomics can also evaluate the collective metabolism pathways of microorganism in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper KW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorhizal fungi. Nature 435(7043):824–827

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP (2002) Root specific elicitation and antimicrobial activity of rosmerinic acid in hairy root cultures of sweet basil (Ocimum basilicum L.). Plant Physiol Biochem 40:983–995

    Article  CAS  Google Scholar 

  • Bais HP, Prithiviraj B, Jha AK, Ausubel FM, Vivanco JM (2005) Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434:217–221

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon AC (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Behm JE, Geurts R, Kiers ET (2014) Parasponia: a novel system for studying mutualism stability. Trends Plant Sci 19(12):757–762

    Article  CAS  PubMed  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Besserer A, Puech PV, Kiefer P (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7):1239–1247

    Article  CAS  Google Scholar 

  • Bittel P, Robatzek S (2007) Microbe associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. MBio 2:e00012–e00011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Botero LM, D'Imperio S, Burr M, McDermott TR, Young M, Hassett DJ (2005) Poly(A) polymerase modification and reverse transcriptase PCR amplification of environmental RNA. Appl Environ Microbiol 71:1267–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouffaud ML, Kyselkova M, Gouesnard B, Grundmann G, Muller D, Moenne LY (2012) Is diversification history of maize influencing selection of soil bacteria by roots? Mol Ecol 21:195–206

    Article  PubMed  Google Scholar 

  • Brandt LJ (2013) Intestinal microbiota and the role of fecal microbiota transplant in treatment of C. difficile infection. Am J Gastroenterol 108:177–185

    Article  PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, ver van Loren TE, Schulze LP (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Cavaglieri L, Orlando J, Etcheverry M (2009) Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol Res 164:391–399

    Article  PubMed  Google Scholar 

  • Chabaud M, Gherbi H, Pirolles E (2015) Chitinase resistant hydrophilic factors secreted by Frankia activate both Ca++ spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. New Phytol 209(1):86–93

    Article  PubMed  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E (2006) GABA controls the level of quorum sensing signal in agrobacterium tumefaciens. Proc Natl Acad Sci U S A 103:7460–7464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung EJ, Lim HK, Kim JC, Choi GJ, Park EJ, Lee MH (2008) Forest soil metagenome gene cluster involved in antifungal activity expression in E. coli. Appl Environ Microbiol 74:723–730

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth promoting bacteria in the rhizosphere and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia GJM, Terol J, Talon M, Robles M (2005) Blast 2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Erkel C, Liesack W (2006) Rice cluster I methanogens, an important group of archaea producing greenhouse gas in soil. Curr Opin Biotechnol 17:262–267

    Article  CAS  PubMed  Google Scholar 

  • Coronado C, Zuanazzi J, Sallaud C (1995) Alfalfa root flavonoid production in nitrogen regulation. Plant Physiol 108(2):533–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low nutrient environment. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Da Rocha UN, Andreote FD, De Azevedo JL, Van Elsas JD, Van Overbeek LS (2010) Cultivation of hitherto uncultured bacteria belonging to the Verrucomicriobio subdivision 1 from the potato (Solanum tuberosum L.) rhizosphere. J Soil Sediments 10:326–339

    Article  CAS  Google Scholar 

  • Davis KER, Sangwan P, Janssen PH (2011) Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow growing and mini colony forming soil bacteria. Environ Microbiol 13:798–805

    Article  PubMed  Google Scholar 

  • Dawson JO (2007) Ecology of actinorhizal plants. In: Nitrogen fixing actinorhizal symbiosis. Nitrogen fixation: origin, application and research progress, vol 6, pp 199–234

    Chapter  Google Scholar 

  • De Angelis KM, Brodie EL, De Santis TZ, Andersen GL, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    Article  CAS  Google Scholar 

  • De la Pena C, Badri DV, Lei Z (2010) Root secretion of defense related proteins is development dependent and correlated with flowering time. J Biol Chem 286(40):30654–30665

    Article  CAS  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV (2002) Flagella driven chemotaxis towards exudates components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microb Interact 15:1173–1180

    Article  Google Scholar 

  • Delaux PM, Sejalon DN, Becard G (2013) Evolution of the plant microbe symbiotic “toolkit”. Trends Plant Sci 18(6):298–304

    Article  CAS  PubMed  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Doornbos RF, Geraata BJP, Kuramae EE, Van Loon LC, Bakker P (2011) Effects of Jasmonic acid, ethylene and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Mol Plant Microb Interact 24:395–407

    Article  CAS  Google Scholar 

  • Dou DL, Zhou JM (2012) Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microb 12:484–495

    Article  CAS  Google Scholar 

  • Doyle JJ (1998) Phylogenetic perspectives on nodulation: evolving views of plant and symbiotic bacteria. Trends Plant Sci 3(12):473–478

    Article  Google Scholar 

  • Eilers KG, Lauber CL, Knight R, Fierer N (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42:896–903

    Article  CAS  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15

    Article  CAS  PubMed  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 2013:1–6

    Article  Google Scholar 

  • Field KJ, Cameron DD, Leake JR (2012) Contrasting arbuscular mycorrhizal responses of vascular and non vascular plants to a simulated Palaeozoic CO2 decline. Nat Commun 3:835

    Article  PubMed  CAS  Google Scholar 

  • Franzosa EA, Morgan XC, Segata N (2014) Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci U S A 111(22):2329–2338

    Article  CAS  Google Scholar 

  • Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem 43:195–229

    Article  CAS  Google Scholar 

  • Garbeva P, Van Elsas JD, Van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32

    Article  CAS  Google Scholar 

  • Garcia MJ, Acinas SG, Anton AI, Rodriguez VF (1999) Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Methods 36:55–64

    Article  Google Scholar 

  • Gasper YM, Nam J, Schultz CJ, Lee LY, Gilson PR, Gelvin SB (2004) Characterization of the arabidopsis lysine rich arabinogalactan protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation. Plant Physiol 135:2162–2171

    Article  Google Scholar 

  • Gotz S et al (2008) High throughput functional annotation and data mining with the Blast2GO suite. Nucl Acid Res 36:3420–3435

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M (2011) Full length transcriptome assembly from RNA seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic system biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109:594–599

    Article  CAS  PubMed  Google Scholar 

  • Haichar FE, Roncato MA, Achouak W (2012) Stable isotope probing of bacterial community structure and gene expression in the rhizosphere of Arabidopsis thaliana. FEMS Microbiol Ecol 81:291–302

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He SM, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods 7:807–812

    Article  CAS  PubMed  Google Scholar 

  • Hein JW, Wolfe GV, Blee KA (2008) Comparision of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistence. Microb Ecol 55:333–343

    Article  CAS  PubMed  Google Scholar 

  • Hewson I, Poretsky RS, Dyhrman ST, Zielinski B, White AE, Tripp HJ (2009) Microbial community gene expression within colonies of the diazotroph, trichodesmium from the Southwest Pacific Ocean. ISME J 3:1286–1300

    Article  CAS  PubMed  Google Scholar 

  • Holmer R, Rutten L, Kohlen W (2017) Commonalities in symbiotic plant microbe signaling. Adv Bot Res 82:187–221

    Article  CAS  Google Scholar 

  • Hortal S, Pera J, Parladé J (2008) Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp. Mycorrhiza 18:69–77

    Article  PubMed  Google Scholar 

  • Hutchison CA, Venter JC (2006) Single cell genomics. Nat Biotechnol 24:657–658

    Article  CAS  PubMed  Google Scholar 

  • Inceoglu O, Abu Al Sound W, Salles JF, Semenov AV, Van Elsas JD (2011) Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One 6:23321

    Article  CAS  Google Scholar 

  • Jiang CJ, Ma GF, Li SX, Hu TT, Che ZQ, Shen PH (2009) Characterization of a novel beta glucosidase like activity from a soil metagenome. J Microbiol 47:542–548

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Jansa J (2017) Mycorrhizas: at the interface of biological, soil and earth science. In: Mycorrhizal mediation of soil. Elsevier, pp 1–6

    Google Scholar 

  • Jones DJ, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kennedy PG, Hortel S, Bergemann SE, Burns TD (2007) Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. J Ecol 95:1338–1345

    Article  CAS  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Kuo A, Nagy LG (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutulists. Nat Genet 47(4):410–415

    Article  CAS  PubMed  Google Scholar 

  • Korf I (2013) Genomics: the state of the art in RNA-seq analysis. Nat Methods 10(12):1165–1166

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Hong KS, Malhotra S, Park JH, Hwang EC, Choi HK (2010) A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl Microbiol Biotechnol 88:1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW (2006) Archaes predominate among ammonia oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Lenton TM, Dahl TW, Daines SJ (2016) Earliest land plants created modern levels of atmospheric oxygen. Proc Natl Acad Sci U S A 113(35):9704–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ (2012) The metatranscriptome of a deep sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6:2257–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257(5072):967–971

    Article  CAS  PubMed  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M (2010) Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences. BMC Genomics 12:S4

    Article  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S (2012) Defining the core Aradidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutzoni F, Nowak MD, Alfaro ME (2018) Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun 5:5451

    Article  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469(7328):58–63

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C (2016) Unearthing the roots of ectomycorrhizal symbiosis. Nat Rev Microbiol 14(12):760–773

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Uroz S, Barker DG (2017) Ancestral alliances: plant mutualistic symbiosis with fungi and bacteria. Science 356(6340):4501

    Article  CAS  Google Scholar 

  • Martinez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG (2012) Gut microbiome composition is linked to whole grain induced immunological improvements. ISME J 7:269–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathesius U, Watt M (2010) Rhizosphere signals for plant microbe interactions: implications for field grown plants. In: Luttge UE, Beyschlag W (eds) Progress in botany, vol 72, pp 125–161

    Google Scholar 

  • McCarren J, Becker JW, Repeta DJ, Shi YM, Young CR, Malmstrom RR (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci U S A 107:16420–16427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath KC, Thomas HSR, Cheng CT, Leo L, Alexa A, Schmidt S (2008) Isolation and analysis of mRNA from environmental microbial communities. J Microbiol Methods 75:172–176

    Article  CAS  PubMed  Google Scholar 

  • McLean JS, Lombardo MJ, Badger JH, Edlund A, Novotny M, Yee GJ (2013) Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci U S A 110:E2390–E2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Micallef SA, Shiaris MP, Colon CA (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variations in root exudates. J Exp Bot 60:1729–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirete S, De Figueras CG, Gonzalez Pastor JE (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol 73:6001–6011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran MA, Satinsky B, Gifford SM, Luo HW, Rivers A, Chan LK (2013) Sizing up metatranscriptomics. ISME J 7:237–243

    Article  CAS  PubMed  Google Scholar 

  • Morandi D, Bailey J, Gianinazzi PV (1984) Isoflavonoid accumulation in soybean roots infected with vesicular arbuscular mycorrhizal fungi. Physiol Plant Pathol 24(3):357–364

    Article  CAS  Google Scholar 

  • Morgan XC, Huttenhower C (2014) Metagenomic analytic techniques for studying the intestinal microbiome. Gastroenterology 146(6):1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mueller RS, Pan C (2013) Sample handling and mass spectrometry for microbial metaproteomic analyses. Methods Enzymol 531:289e303

    Google Scholar 

  • Mukerji KG, Manoharachary C, Singh J (2006) Microbial activity in the rhizosphere. Springer, New York, p 7

    Book  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro – the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal RNA. Appl Environ Microbiol 59:695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadarajah K (2016) Induced systemic resistance in rice. In: Choudhary KD, Varma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 103–124

    Chapter  Google Scholar 

  • Narberhaus F, Vogel J (2009) Regulatory RNAs in prokaryotes: Here, there and everywhere. Mol Microbiol 74:261–269

    Article  CAS  PubMed  Google Scholar 

  • Navarro RA, Xu HAO, Kemppainen M (2015) Laccaria bicolor aquaporin LbAQP1 is required for Hartig net development in trembling aspen (Populus tremuloides). Plant Cell Environ 38(11):2475–2486

    Article  CAS  Google Scholar 

  • Nguema OE, Vicre GM, Cannesan MA (2013) Arabinogalactan proteins in root – microbe interactions. Trends Plant Sci 18(8):440–449

    Article  CAS  Google Scholar 

  • Oldroyd GED, Murray JD, Poole PS, Downie JA (2011a) The rules of engagement in the legume-Rhizobial symbiosis. Ann Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Murray JD, Poole PS et al (2011b) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45(1):119–144

    Article  CAS  PubMed  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7:e43093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pressel S, Bidartondo MI, Ligrone R et al (2014) Fungal symbioses in bryophytes: new insights in the twenty first century. Phytotaxa 9(1):238–253

    Article  Google Scholar 

  • Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G (2017) The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci Rep 7:3940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, Nybroe O (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran VK, East AK, Ramakrishnan K, Downie JA, Poole PS (2011) Adaptation of rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol 12:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raychoudhury R, Sen R, Cai Y, Sun Y, Lietze VU, Boucias DG et al (2011) Comparative metatranscriptomic signatures of wood and paper feeding in the gut of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Insect Mol Biol 22:155–171

    Article  CAS  Google Scholar 

  • Reinhold HB, Bunger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    Article  CAS  Google Scholar 

  • Remigi P, Zhu J, Young JPW (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Rinku D, Suman C, Anju K, Rakesh K, Sneh G (2020) Symbiotic signaling: insights from arbuscular mycorrhizal Symbiosis. Plant Microbe Symb:75–103

    Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  PubMed  Google Scholar 

  • Shaffer JP, Uren JM, Gallery RE (2017) An endohyphal bacterium (Chitinophaga, Bacteroidetes) alters carbon source use by Fusarium keratoplasticum (F. solani species complex, Nectriaceae). Frontiers in. Microbiology 8:350

    Google Scholar 

  • Shagina I, Bogdanova E, Mamedov IZ, Lebedev Y, Lukyanov S, Shagin D (2010) Normalization of genomic DNA using duplex-specific nuclease. BioTechniques 48:455–459

    Article  CAS  PubMed  Google Scholar 

  • Shakya M, Quince C, Campbell JH, Yang ZMK, Schadt CW, Podar M (2013) Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. Environ Microbiol 15:1882–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi SJ, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77:600–610

    Article  CAS  PubMed  Google Scholar 

  • Shirley B, Alejandra V-L, Fernanda CG (2015) Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiomes. Comput Struct Biotechnol J 13:390–401

    Article  CAS  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  • Spatafora JW, Chang Y, Benny GL (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel SH, Dong XN (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  PubMed  Google Scholar 

  • Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    Article  CAS  PubMed  Google Scholar 

  • Stewart FJ, Ulloa O, DeLong EF (2012) Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ Microbiol 14:23–40

    Article  CAS  PubMed  Google Scholar 

  • Strullu DC, Kenrick P, Pressel S (2014) Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant-fungus symbioses. New Phytol 203(3):964–979

    Article  PubMed  Google Scholar 

  • Strullu DC, Selosse MA, Kenrick P (2018) The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol 220:1012–1030

    Article  Google Scholar 

  • Stursova M, Zifcakova L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746

    Article  CAS  PubMed  Google Scholar 

  • Takasaki K, Miura T, Kanno M, Tamaki H, Hanada S, Kamagata Y (2013) Discovery of glycoside hydrolase enzymes in an avicel adapted forest soil fungal community by a metatranscriptomic approach. PLoS One 8:e55485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Temperton B, Field D, Oliver A, Tiwari B, Muhling M, Joint I (2009) Bias in assessments of marine microbial biodiversity in fosmid libraries as evaluated by pyrosequencing. ISME J 3:792–796

    Article  CAS  PubMed  Google Scholar 

  • Tett AJ, Turner TR (2012) Poole PS, Genomics and the rhizosphere. eLS. Wiley

    Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Turner T, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene-sequences. J Bacteriol 177:1414–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3:e2527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uroz S, Buee M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288

    Article  CAS  PubMed  Google Scholar 

  • Ursell LK, Knight R (2013) Xenobiotics and the human gut microbiome: metatranscriptomics reveal the active players. Cell Metab 17:317–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci 109:1159–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Nguyen T, Pawlowski K (2017) Frankia and actinorhizal plants: symbiotic nitrogen fixation. In: Rhizotrophs: plant growth promotion to bioremediation microorganisms for sustainability, vol 2. Springer, Singapore, pp 237–261

    Chapter  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    Article  PubMed  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Vila-Costa M, Sharma S, Moran MA, Casamayor EO (2013) Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environ Microbiol 15:1190–1203

    Article  CAS  PubMed  Google Scholar 

  • Wagg C, Bender SF, Widmer F, Van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci U S A 106:3853–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hayatsu M, Fujii T (2012) Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 27:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Weinberg Z, Perreault J, Meyer MM, Breaker RR (2009) Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 462:656–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner GDA, Cornwell WK, Sprent JI et al (2014) A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat Commun 5:1–9

    Article  CAS  Google Scholar 

  • Williams SCP (2013) The other microbiome. Proc Natl Acad Sci U S A 110:2682–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmann R, Lajunen HM, Erbs G (2011) Mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci U S A 108(49):19824–19829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms - proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Eisen JA (2008) A simple, fast and accurate method of phylogenomic inference. Genome Biol 9:151

    Article  CAS  Google Scholar 

  • Xiao CL et al (2014) FANSe2: a robust and cost-efficient alignment tool for quantitative next-generation sequencing applications. PLoS One 9:e94250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie F, Williams A, Edwards A, Downie JA (2012) A plant arabinogalactan like glycoprotein promotes a novel type of polar surface attachment by rhizobium leguminosarum. Mol Plant-Microbe Interact 25:250–258

    Article  CAS  PubMed  Google Scholar 

  • Xiong X, Frank DN, Robertson CE, Hung SS, Markle J, Canty AJ (2012) Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing. PLoS One 7:e36009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Allen C (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188:3697–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi H, Cho YJ, Won S, Lee JE, Yu HJ, Kim S et al (2011) Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq. Nucleic Acids Res 39:e40

    Article  CAS  Google Scholar 

  • Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3'ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Gao J, Ma A (2013) Bioactive molecules in soil ecosystems: masters of the underground. Int J Mol Sci 14(5):8841–8868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB (2004) Simple cDNA normalization using Kamchatka crab duplex-specific nuclease. Nucleic Acids Res 32:15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, M.K., Siddique, R.A., Ranjan, K., Chandra, D., Singh, N.P. (2021). Relevance of Metatranscriptomics in Symbiotic Associations Between Plants and Rhizosphere Microorganisms. In: Nath, M., Bhatt, D., Bhargava, P., Choudhary, D.K. (eds) Microbial Metatranscriptomics Belowground. Springer, Singapore. https://doi.org/10.1007/978-981-15-9758-9_3

Download citation

Publish with us

Policies and ethics