Skip to main content

Green Composites: Introductory Overview

  • Chapter
  • First Online:
Green Composites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

The gowning environmental concerns lead to the development of sustainable and eco-friendly products made of natural resources called green composites. This chapter gives an introductory overview of green composites. Different types of matrix and natural fiber used for the development of green composites have been discussed thoroughly by investigating their properties and fabrication methods. The applications of green composites in different fields have been reviewed. The machining and joining behavior of green composites has also been discussed in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  2. Netravali AN, Chabba S (2003) Composites get greener. Mater Today 4(6):22–29

    Article  Google Scholar 

  3. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915

    Article  CAS  Google Scholar 

  4. Nurul Fazita MR, Jayaraman K, Bhattacharyya D, Mohamad Haafiz MK, Saurabh CK, Hussin MH, Abdul Khalil HPS (2016) Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—a review. Materials 9(6):435

    Article  CAS  Google Scholar 

  5. Oyama IC, de Souza GP, Rezende MC, Montagna LS, Passador FR (2020) A new eco-friendly green composite for antistatic packaging: green low-density polyethylene/glassy carbon. Polym Compos. https://doi.org/10.1002/pc.25572

    Article  Google Scholar 

  6. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B 44(1):120–127

    Article  CAS  Google Scholar 

  7. Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries! Bioresour Technol 99(11):4661–4667

    Article  CAS  Google Scholar 

  8. Georgios K, Silva A, Furtado S (2016) Applications of green composite materials. Biodegrad Green Compos 16:312

    Article  Google Scholar 

  9. Dicker MP, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos A 56:280–289

    Article  CAS  Google Scholar 

  10. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A 42(6):579–588

    Article  CAS  Google Scholar 

  11. Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  CAS  Google Scholar 

  12. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892

    Article  CAS  Google Scholar 

  13. Potluri R (2019) Natural fiber-based hybrid bio-composites: processing, characterization, and applications. Green composites. Springer, Singapore, pp 1–46

    Google Scholar 

  14. Thames SF, Zhou L (1998) Effect of preparation and processing on mechanical properties and water absorption of soy protein based biocomposite. In: 5th international conference on composites engineering, ICCE, Las Vegas, Nevada, 5–11 July 1998

    Google Scholar 

  15. Li K, Peshkova S, Geng X (2004) Investigation of soy protein-Kymene® adhesive systems for wood composites. J Am Oil Chem Soc 81(5):487–491

    Article  CAS  Google Scholar 

  16. Drzal LT (2002) Environmentally friendly bio-composites from soy-based bio-plastic and natural fiber. Polym Mat Sci Eng 87:117

    CAS  Google Scholar 

  17. Lodha P, Netravali AN (2002) Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber. J Mater Sci 37(17):3657–3665

    Article  CAS  Google Scholar 

  18. Chabba S, Netravali AN (2004) ‘Green’ composites using modified soy protein concentrate resin and flax fabrics and yarns. JSME 47(4):556–560

    CAS  Google Scholar 

  19. Nam S, Netravali AN (2004) Characterization of ramie fiber/soy protein concentrate (SPC) resin interface. J Adhes Sci Technol 18(9):1063–1076

    Article  CAS  Google Scholar 

  20. Takagi H et al (2002) International workshop on ‘Green’ Composites, 4

    Google Scholar 

  21. Ochi S et al (2002) International workshop on ‘Green’ Composites, 22

    Google Scholar 

  22. Ichihara Y, Takagi H (2002) International workshop on ‘Green’ Composites, 26

    Google Scholar 

  23. Goda K et al. (2002) International workshop on ‘Green’ Composites, 8

    Google Scholar 

  24. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46

    Article  CAS  Google Scholar 

  25. Alberts AH, Rothenberg G (2017) Plantics-GX: a biodegradable and cost-effective thermoset plastic that is 100% plant-based. Faraday Discuss 202:111–120

    Article  CAS  Google Scholar 

  26. Cai M, Liu H, Jiang Y, Wang J, Zhang S (2019) A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation. Colloid Surfaces B 183:110445

    Article  CAS  Google Scholar 

  27. Manvi PK, Beckers M, Mohr B, Seide G, Gries T, Bunge CA (2019) Polymer fiber-based biocomposites for medical sensing applications. Mater Biomed Eng. https://doi.org/10.1016/B978-0-12-816872-1.00003-0

    Article  Google Scholar 

  28. Choudhury MR, Debnath K (2019) Experimental analysis of tensile and compressive failure load in single-lap bolted joint of green composites. Compos Struct 225:111180

    Article  Google Scholar 

  29. de Oca HM, Ward IM (2006) Structure and mechanical properties of PGA crystals and fibres. Polymer 47(20):7070–7077

    Article  CAS  Google Scholar 

  30. Takayama T, Daigaku Y, Ito H, Takamori H (2014) Mechanical properties of bio-absorbable PLA/PGA fiber-reinforced composites. J Mech Sci Technol 28(10):4151–4154

    Article  Google Scholar 

  31. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659

    Article  CAS  Google Scholar 

  32. Melo LPD, Salmoria GV, Fancello EA, Roesler CRDM (2017) Effect of injection molding melt temperatures on PLGA craniofacial plate properties during in vitro degradation. Int J Biomater. https://doi.org/10.1155/2017/1256537

    Article  Google Scholar 

  33. Rudnik E (2008) Compostable polymer properties and packaging applications. In: Rudnik E (ed) Compostable polymer materials. Elsevier, Józefów, Poland. https://doi.org/10.1016/B978-1-4557-3112-1.00013-2

  34. Serrano PJM, Thüss E, Gaymans RJ (1997) Alternating polyesteramides based on 1, 4-butylene terephthalamide: 2. Alternating polyesteramides based on a single, linear diol (4NTm). Polymer 38(15):3893–3902

    Google Scholar 

  35. Jamaluddin N, Razaina MT, Ishak ZM (2016) Mechanical and morphology behaviours of polybutylene (succinate)/thermoplastic polyurethaneblend. Procedia Chem 19:426–432

    Article  CAS  Google Scholar 

  36. https://omnexus.specialchem.com/polymer-properties/properties/stiffness. Last viewed: 15 May 2020

  37. Jayaraman K (2003) Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos Sci Technol 63:367–374

    Article  CAS  Google Scholar 

  38. Wang Q, Kaliaguine S, Ait‐Kadi A (1992) Catalytic grafting: a new technique for polymer–fiber composites I. Polyethylene–asbestos composites. J Appl Polym Sci 44(6):1107–1119

    Google Scholar 

  39. Shekar HS, Ramachandra M (2018) Green composites: a review. Mater Today Proc 5(1):2518–2526

    Article  CAS  Google Scholar 

  40. Jha K, Kataria R, Verma J, Pradhan S (2019) Potential biodegradable matrices and fiber treatment for green composites: a review. AIMS Mater Sci 6(1):119–138

    Article  CAS  Google Scholar 

  41. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162

    Article  CAS  Google Scholar 

  42. Sailesh A, Arunkumar R, Saravanan S (2018) Mechanical properties and wear properties of Kenaf–aloe vera–jute fiber reinforced natural fiber composites. Mater Today Proc 5(2):7184–7190

    Article  CAS  Google Scholar 

  43. Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. J Waste Manag 30(4):680–684

    Article  CAS  Google Scholar 

  44. Fávaro SL, Lopes MS, de Carvalho Neto AGV, de Santana RR, Radovanovic E (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos A 41(1):154–160

    Article  CAS  Google Scholar 

  45. Pfister DP, Larock RC (2010) Green composites from a conjugated linseed oil-based resin and wheat straw. Compos A 41(9):1279–1288

    Article  CAS  Google Scholar 

  46. Ahankari SS, Mohanty AK, Misra M (2011) Mechanical behaviour of agro-residue reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate),(PHBV) green composites: A comparison with traditional polypropylene composites. Compos Sci Technol 71(5):653–657

    Article  CAS  Google Scholar 

  47. Reddy N, Yang Y (2005) Properties and potential applications of natural cellulose fibers from cornhusks. Green Chem 7(4):190–195

    Article  CAS  Google Scholar 

  48. Bajpai PK, Singh I, Madaan J (2014) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27(1):52–81

    Article  CAS  Google Scholar 

  49. Choudhury MR, Debnath K (2020) Experimental analysis of tensile and compressive failure load in single-lap adhesive joint of green composites. Int J Adhes Adhes 99:102557

    Article  CAS  Google Scholar 

  50. Yu S, Hwang YH, Hwang JY, Hong SH (2019) Analytical study on the 3D-printed structure and mechanical properties of basalt fiber-reinforced PLA composites using X-ray microscopy. Compos Sci Technol 175:18–27

    Article  CAS  Google Scholar 

  51. Rigolin TR, Takahashi MC, Kondo DL, Bettini SHP (2019) Compatibilizer acidity in coir-reinforced PLA composites: matrix degradation and Composite properties. J Polym Environ 27(5):1096–1104

    Article  CAS  Google Scholar 

  52. Komal UK, Lila MK, Singh I (2020) PLA/banana fiber based sustainable biocomposites: a manufacturing perspective. Compos B 180:107535

    Article  CAS  Google Scholar 

  53. Chaitanya S, Singh I (2016) Novel Aloe Vera fiber reinforced biodegradable composites—development and characterization. J Reinf Plast Compo 35(19):1411–1423

    Article  CAS  Google Scholar 

  54. Wahit MU, Akos NI, Laftah WA (2012) Influence of natural fibers on the mechanical properties and biodegradation of poly (lactic acid) and poly (ε-caprolactone) composites: a review. Polym Compos 33(7):1045–1053

    Article  CAS  Google Scholar 

  55. Cyras VP, Iannace S, Kenny JM, Vázquez A (2001) Relationship between processing and properties of biodegradable composites based on PCL/starch matrix and sisal fibers. Polym Compos 22(1):104–110

    Article  CAS  Google Scholar 

  56. Chen B, Sun K, Ren T (2005) Mechanical and viscoelastic properties of chitin fiber reinforced poly (ε-caprolactone). Eur Polym J 41(3):453–457

    Article  CAS  Google Scholar 

  57. Xu H, Wang L, Teng C, Yu M (2008) Biodegradable composites: Ramie fibre reinforced PLLA-PCL composite prepared by in situ polymerization process. Polym Bulletin 61(5):663–670

    Article  CAS  Google Scholar 

  58. Hamid MZA, Ibrahim NA, Yunus WMZW, Zaman K, Dahlan M (2010) Effect of grafting on properties of oil palm empty fruit bunch fiber reinforced polycaprolactone biocomposites. J Reinf Plast Comp 29(18):2723–2731

    Article  CAS  Google Scholar 

  59. Cao Y, Goda K, Shibata S (2007) Development and mechanical properties of bagasse fiber reinforced composites. Adv Compos Mater 16(4):283–298

    Article  CAS  Google Scholar 

  60. Yang A, Wu R (2002) Enhancement of the mechanical properties and interfacial interaction of a novel chitin-fiber-reinforced poly (ϵ-caprolactone) composite by irradiation treatment. J Appl Poly Sci 84(3):486–492

    Article  CAS  Google Scholar 

  61. Misra R, Kumar S, Sandeep K, Misra A (2008) Dynamic analysis of banana fiber reinforced high-density polyethylene/poly (ε-caprolactone) composites. J Mech Mater Struct 3(1):107–125

    Article  Google Scholar 

  62. Lee SH, Ohkita T (2003) Mechanical and thermal flow properties of wood flour–biodegradable polymer composites. J Appl Poly Sci 90(7):1900–1905

    Article  CAS  Google Scholar 

  63. Goriparthi BK, Suman KNS, Nalluri MR (2012) Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/polycaprolactone blends. Polym Compos 33(2):237–244

    Article  CAS  Google Scholar 

  64. Qiao X, Li W, Sun K, Xu S, Chen X (2009) Nonisothermal crystallization behaviors of silk-fibroin-fiber-reinforced poly (ϵ-caprolactone) biocomposites. J Appl Poly Sci 111(6):2908–2916

    Article  CAS  Google Scholar 

  65. Dhakal HN, Ismail SO, Beaugrand J, Zhang Z, Zekonyte J (2020) Characterization of nano-mechanical, surface and thermal properties of hemp fiber-reinforced polycaprolactone (HF/PCL) biocomposites. Appl Sci 10(7):2636

    Article  CAS  Google Scholar 

  66. Mina JH, González AV, Muñoz-Vélez MF (2020) Micro-and macromechanical properties of a composite with a ternary PLA–PCL–TPS matrix reinforced with short Fique fibers. Polymers 12(1):58

    Article  CAS  Google Scholar 

  67. Siqueira DD, Luna CBB, Araújo EM, Ferreira ESB, Wellen RMR (2019) Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Mater Res Express 6(9):095335

    Google Scholar 

  68. Guo Y, Wang L, Chen Y, Luo P, Chen T (2019) Properties of Luffa fiber reinforced PHBV biodegradable composites. Polymers 11(11):1765

    Article  CAS  Google Scholar 

  69. Panaitescu DM, Nicolae CA, Gabor AR, Trusca R (2020) Thermal and mechanical properties of poly (3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Ind Crops Prod 145:112071

    Article  CAS  Google Scholar 

  70. Muniyasamy S, Ofosu O, Thulasinathan B, Rajan AST, Ramu SM, Soorangkattan et al (2019) Thermal-chemical and biodegradation behaviour of alginic acid treated flax fibres/poly (hydroxybutyrate-co-valerate) PHBV green composites in compost medium. Biocatal Agric Biotechnol 22:101394

    Google Scholar 

  71. Jiang L, Huang J, Qian J, Chen F, Zhang J, Wolcott MP, Zhu Y (2008) Study of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/bamboo pulp fiber composites: Effects of nucleation agent and compatibilizer. J Polym Environ 16(2):83–93

    Article  CAS  Google Scholar 

  72. Luo S, Netravali AN (1999) Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly (hydroxybutyrate-co-valerate) resin. J Mater Sci 34(15):3709–3719

    Article  CAS  Google Scholar 

  73. Berthet MA, Angellier-Coussy H, Chea V, Guillard V, Gastaldi E, Gontard N (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos a 72:139–147

    Article  CAS  Google Scholar 

  74. Javadi A, Srithep Y, Pilla S, Lee J, Gong S, Turng LS (2010) Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater Sci Eng C 30(5):749–757

    Article  CAS  Google Scholar 

  75. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M, Gentile G, Errico M (2007) Crystallization behavior of poly (hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42(16):6501–6509

    Article  CAS  Google Scholar 

  76. Zhang Y, Yu C, Chu PK, Lv F, Zhang C, Ji J et al (2012) Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites. Mater Chem Phy 133(2–3):845–849

    Article  CAS  Google Scholar 

  77. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos B 42(6):1648–1656

    Article  CAS  Google Scholar 

  78. Bin T, Qu JP, Liu LM, Feng YH, Hu SX, Yin XC (2011) Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly (butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta 525(1–2):141–149

    Article  CAS  Google Scholar 

  79. Ohkita K, Takagi H (2010) Flexural properties of injection-molded bamboo/PBS composites. Int J Mod Phys B 24:2838–2843

    Article  CAS  Google Scholar 

  80. Zhang M, Ding F, Li C, Ge Z, Tian Y (2011) Effect of different treatment and modifiers on the straw fiber/PBS composites property. Acta Materiae Compositae Sinica 28(1):56–60

    Google Scholar 

  81. Huang Z, Qian L, Yin Q, Yu N, Liu T, Tian D (2018) Biodegradability studies of poly (butylene succinate) composites filled with sugarcane rind fiber. Polym Test 66:319–326

    Article  CAS  Google Scholar 

  82. Frollini E, Bartolucci N, Sisti L, Celli A (2013) Poly (butylene succinate) reinforced with different lignocellulosic fibers. Ind Crop Prod 45:160–169

    Article  CAS  Google Scholar 

  83. Nam TH, Ogihara S, Kobayashi S, Goto K (2015) Effects of surface treatment on mechanical and thermal properties of jute fabric-reinforced poly (butylene succinate) biodegradable composites. Adv Compos Mater 24(2):161–178

    CAS  Google Scholar 

  84. Song R, Kimura T (2011) Mechanical properties of silk/bamboo hybrid paper reinforced PBS green composite. J Tex Eng 57(1):1–7

    Article  Google Scholar 

  85. Li J, Ben G, Yang J (2014) Fabrication of hemp fiber-reinforced green composites with organoclay-filled poly (butylene succinate) matrix by pultrusion process. Sci Eng Compos Mater 21(2):289–294

    Article  CAS  Google Scholar 

  86. Azhar SW, Xu F, Zhang Y, Qiu Y (2019) Fabrication and mechanical properties of flaxseed fiber bundle-reinforced polybutylene succinate composites. J Ind Text, 1–16

    Google Scholar 

  87. Soatthiyanon N, Aumnate C, Srikulkit K (2020) Rheological, tensile, and thermal properties of poly (butylene succinate) composites filled with two types of cellulose (kenaf cellulose fiber and commercial cellulose). Polym Compos. https://doi.org/10.1002/pc.25575

    Article  Google Scholar 

  88. Subash T, Pillai SN (2015) Bast fibers reinforced green composites for aircraft indoor structures applications: Review. J Chem Pharm Sci 7:305–307

    Google Scholar 

  89. Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A 43(8):1419–1429

    Article  Google Scholar 

  90. Irwin L (2007) Biomass Magazine, BBI International, July. Available from: https://issuu.com/bbiinternational/docs/bmm-june.07_print. Last viewed: 15 May 2020

  91. www.warwick.ac.uk/newsandevents/pressreleases/racing_car (2011). Last viewed: 15 May 2020

  92. www.pole-mer-bretagne.com/navecomat_0.php. Last viewed: 15 May 2020

  93. Le Duigou A, Davies P, Baley C (2009) Seawater ageing of flax/poly (lactic acid) biocomposites. Polym Degrad Stabil 94(7):1151–1162

    Article  CAS  Google Scholar 

  94. Mohanty AK, Misra MA, Hinrichsen GI (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromole Mater Eng 276(1):1–24

    Google Scholar 

  95. Iji M, Kiuchi Y. ITR (2012) Highly functional PLA composites used for electronic products. Green Innovation Reseach, Laboratories NEC Corporation. Available from: https://www.innovationtakesroot.com/~/media/ITR2012/2012/presentations/durables/01_Highly-Functional-PLA-Composites_Iji_pdf.pdf. Last viewed: 15 May 2020

  96. Herrera T (2012) Sprint to require green certification for all cell phones. <http:// www.greenbiz.com/blog/2012/01/09/sprint-require-green-certification-allcell-phones. [last viewed: May 15, 2020].

  97. Lucintel (2012) XBoards introduces snowboard made from flax fibre composite. Available from: https://www.lucintel.com/news/xboards_introduces_snowboard_made_from_flax_fibre_composite.aspx. Last viewed: 15 May 2020

  98. JEC Composites (2012) Biocomposite snowboard using Biotex flax fabric. https://www.jeccomposites.com/news/features/biocomposites/biocompositesnowboard-using-biotex-flax-fabric. Last viewed: 15 May 2020

  99. Artengo (2011). Artengo Flaxfiber. Available from: https://www.artengo.com/EN/tennis-178543753/. Last viewed: 15 May 2020

  100. Museeuw (2012) MF-5. Available from: https://en.museeuwbikes.be/bikes/race/mf-5. Last viewed: 15 May 2020

  101. Dai W, Kawazoe N, Lin X, Dong J et al (2010) The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 31(8):2141–2152

    Article  CAS  Google Scholar 

  102. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA et al (2008) Clinical transplantation of a tissue-engineered airway. The Lancet 372(9655):2023–2030

    Article  Google Scholar 

  103. Mohanty AK, Misra M, Drzal TL, Selke SE, Harte BR, Hinrichsen G (2005) Natural fibers, biopolymers, and biocomposites: an introduction. In: Natural fibers, biopolymers, and biocomposites. CRC Press-Taylor & Francis Group, Boca Raton, USA, pp 1–36

    Google Scholar 

  104. Anonymous (2007) Bioplastics in automotive applications. Bioplastics Magazine. Available from: https://bioplastics-cms.de/bioplastics/. Last viewed: 15 May 2020

  105. Mitsubishi Motors develops plant-based green plastic floor mat. Tokyo: Mitsubishi Motors Co. mitsubishi-motors.com. Available from: https://www.mitsubishimotors.com/en/corporate/pressrelease/corporate/detail1475.html. Last viewed: 15 May 2020

  106. North America enviromental report, report recycling use. Available from: https://www.toyota.com/about/enviroreport2008/pdfs/2008Report_Recycling_Use.pdf. Last viewed: 15 May 2020

  107. Stewart R (2010) Automotive composites offer lighter solutions. Reif Plast 54(2):22–28

    Article  Google Scholar 

  108. Automotive news world congress, Detroit, toyota.com. Available from: https://www.toyota.com/about/news/corporate/2011/01/13-1-Automotive.html. Last viewed: 15 May 2020

  109. Anonymous (2000) Daimler Chrysler turns to natural fibres. Reinf Plast 44:21

    Article  Google Scholar 

  110. Daimler Chrysler Uses a Natural-fiber Component in the Exterior of the Mercedes-Benz A-Class, Stuttgart, 2005. Available from: https://media.daimler.com/dcmedia/0-921-657582-1-815396-1-0-0-0-0-1-11701-854934-0-1-0-0-0-0-0.html. Last viewed: 15 May 2020

  111. Ghavami K (2005) Bamboo as reinforcement in structural concrete elements. Cement Concrete Compos 27:637–649

    Article  CAS  Google Scholar 

  112. Ochi S (2006) Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos Part a 37:1879–1883

    Article  CAS  Google Scholar 

  113. Lee JT, Kim MW, Song YS, Kang TJ, Youn JR (2010) Mechanical properties of denim fabric reinforced poly(lactic acid). Fibers Polym 11:60–66

    Article  CAS  Google Scholar 

  114. Shi QF, Mou HY, Li QY, Wang JK, Guo WH (2012) Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci 123:2828–2836

    Article  CAS  Google Scholar 

  115. Annicchiarico D, Alcock JR (2014) Review of factors that affect shrinkage of molded part in injection molding. Mater Manuf Process 29(6):662–682

    Article  CAS  Google Scholar 

  116. Tokiwa Y, Calabia B (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    Article  CAS  Google Scholar 

  117. Shi B, Palfery D (2012) Temperature-dependent polylactic acid (PLA) anaerobic biodegradablity. Int J Environ Waste Manag 10:297–306

    Article  CAS  Google Scholar 

  118. Yussuf A, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429

    Article  CAS  Google Scholar 

  119. Liu W, Misra M, Askeland P, Drzal LT, Mohanty AK (2005) ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer 46(8):2710–2721

    Article  CAS  Google Scholar 

  120. Oksman K, Skrifvars M, Selin JF (2003) Natural fibers as reinforcement in polylacticacid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  121. Aluigi A, Vineis C, Ceria A, Tonin C (2008) Composite biomaterials from fibre wastes: characterization of wool–cellulose acetate blends. Composite Part A 39:126–132

    Article  CAS  Google Scholar 

  122. Morreale M, Scaffaro R, Maio A, La MFP (2008) Effect of adding wood flour to the physical properties of a biodegradable polymer. Composite Part A 39(3):503–513

    Article  CAS  Google Scholar 

  123. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286

    Article  CAS  Google Scholar 

  124. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stabil 95:889–900

    Article  CAS  Google Scholar 

  125. Choudhury MR, Srinivas MS, Debnath K (2018) Experimental investigations on drilling of lignocellulosic fiber reinforced composite laminates. J Manuf Process 34:51–61

    Article  Google Scholar 

  126. Piquet R, Ferret B, Lachaud F, Swider P (2000) Experimental analysis of drilling damage in thin carbon/epoxy plate using special drills. Compos A 31:1107–1115

    Article  Google Scholar 

  127. Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J Mater Process Tech 160(2):160–167

    Article  CAS  Google Scholar 

  128. Palanikumar K, Karunamoorthy L, Karthikeyan R (2006) Assessment of factors influencing surface roughness on the machining of glass fiber-reinforced polymer composites. Mater Des 27(10):862–871

    Article  CAS  Google Scholar 

  129. Choudhury MR, Debnath K (2020) Analysis of tensile failure load of single-lap green composite specimen welded by high-frequency ultrasonic vibration. Mater Today Proc

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhury, M.R., Debnath, K. (2021). Green Composites: Introductory Overview. In: Thomas, S., Balakrishnan, P. (eds) Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9643-8_1

Download citation

Publish with us

Policies and ethics