Skip to main content

Carbon Nanotubes—Potential of Use for Deep Bioimaging

  • Chapter
  • First Online:
Transparency in Biology

Abstract

Single-walled carbon nanotubes (CNTs) are a major over 1000-nm near-infrared fluorophore that enables in vivo deep imaging in the “second biological window.” Because of the unique properties with their tube-shaped morphology, the CNTs show extremely unique in vivo behaviors including the migration and retention in the organs and time-dependent change in the cellular uptake followed by intracellular distribution. This chapter reviews the in vivo deep imaging results using CNTs and unique in vivo behavior and biological effects of CNTs comparatively with their types with different properties. The information is important for future safe and further functional biomedical use of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  2. A. Thess, R. Lee, P. Nikolaev et al., Crystalline Ropes of Metallic Carbon Nanotubes. Science 276, 483 (1996). https://doi.org/10.1126/science.273.5274.483

    Article  Google Scholar 

  3. W.Z. Li, S.S. Xie, L.X. Qian et al., Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701 (1996). https://doi.org/10.1126/science.274.5293.1701

    Article  CAS  PubMed  Google Scholar 

  4. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992). https://doi.org/10.1038/358220a0

    Article  CAS  Google Scholar 

  5. C. Farrera, F. Torres Andon, N. Feliu, Carbon nanotubes as optical sensors in biomedicine. ACS Nano. 11, 10637 (2017). https://doi.org/10.1021/acsnano.7b06701

  6. E. Hemmer, A. Benayas, F. Légaré et al., Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horiz 1, 168 (2016). https://doi.org/10.1039/C5NH00073D

    Article  CAS  PubMed  Google Scholar 

  7. S.M. Bachilo, C. Kittrell, R.H. Hauge et al., Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361 (2002). https://doi.org/10.1126/science.1078727

    Article  CAS  PubMed  Google Scholar 

  8. A.M. Smith, M.C. Mancini, S. Nie, Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4, 710 (2009). https://doi.org/10.1038/nnano.2009.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Ghosh, S.M. Bachilo, R.B. Weisman, Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 5, 443 (2010). https://doi.org/10.1038/nnano.2010.68

    Article  CAS  PubMed  Google Scholar 

  10. H. Liu, D. Nishide, T. Tanaka et al., Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011). https://doi.org/10.1038/ncomms1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Ghosh, R.A. Simonette, K.M. Beckingham et al., Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656 (2010). https://doi.org/10.1126/science.1196382

    Article  CAS  PubMed  Google Scholar 

  12. Y. Iizumi, M. Yudasaka, J. Kim et al., Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes. Sci. Rep. 8, 6272 (2018). https://doi.org/10.1038/s41598-018-24399-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D.A. Heller, S. Baik, T.E. Eurell et al., Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793 (2005). https://doi.org/10.1002/adma.200500477

    Article  Google Scholar 

  14. S. Sekiyama, M. Umezawa, Y. Iizumi et al., Delayed increase in near-infrared fluorescence in cultured murine cancer cells labeled with oxygen-doped single-walled carbon nanotubes. Langmuir 35, 831 (2019). https://doi.org/10.1021/acs.langmuir.8b03789

    Article  CAS  PubMed  Google Scholar 

  15. K. Welsher, Z. Liu, S.P. Sherlock et al., A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773 (2009). https://doi.org/10.1038/nnano.2009.294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D. Jaque, C. Richard, B. Viana et al., Inorganic nanoparticles for optical bioimaging. Adv. Opt. Photonics 8, 1 (2016). https://doi.org/10.1364/AOP.8.000001

    Article  Google Scholar 

  17. G. Hong, S. Diao, J. Chang et al., Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8, 723 (2014). https://doi.org/10.1038/nphoton.2014.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. X. Dang, L. Gu, J. Qi, et al., Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc. Natl. Acad. Sci. USA. 113, 5179 (2016). https://doi.org/10.1073/pnas.1521175113

  19. J.T. Robinson, G. Hong, Y. Liang et al., In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 134, 10664 (2012). https://doi.org/10.1021/ja303737a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K. Welsher, S.P. Sherlock, H. Dai, Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA. 108, 8943 (2011). https://doi.org/10.1073/pnas.1014501108

  21. J.T. Robinson, S.M. Tabakman, Y. Liang et al., Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825 (2011). https://doi.org/10.1021/ja2010175

    Article  CAS  PubMed  Google Scholar 

  22. H. Yi, D. Ghosh, M.H. Ham et al., M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 12, 1176 (2012). https://doi.org/10.1021/nl2031663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Liang, S. Diao, C. Wang et al., Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 26, 5646 (2014). https://doi.org/10.1002/adma.201401825

    Article  CAS  PubMed  Google Scholar 

  24. G. Hong, J.C. Lee, J.T. Robinson et al., Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 18, 1841 (2012). https://doi.org/10.1038/nm.2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. G. Hong, J.C. Lee, A. Jha et al., Near-infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement. Circ. Cardiovasc. Imaging 7, 517 (2014). https://doi.org/10.1161/CIRCIMAGING.113.000305

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Yudasaka, Y. Yomogida, M. Zhang et al., Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci. Rep. 7, 44760 (2017). https://doi.org/10.1038/srep44760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K. Welsher, Z. Liu, D. Daranciang et al., Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8, 586 (2008). https://doi.org/10.1021/nl072949q

    Article  CAS  PubMed  Google Scholar 

  28. N.M. Iverson, P.W. Barone, M. Shandell et al., In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8, 873 (2013). https://doi.org/10.1038/nnano.2013.222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. N. Saito, H. Haniu, Y. Usui et al., Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 114, 6040 (2014). https://doi.org/10.1021/cr400341h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E. Durantie, D. Vanhecke, L. Rodriguez-Lorenzo et al., Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface. Part. Fibre Toxicol. 14, 49 (2017). https://doi.org/10.1186/s12989-017-0231-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D.M. Brown, I.A. Kinloch, U. Bangert et al., An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45, 1743 (2007). https://doi.org/10.1016/j.carbon.2007.05.011

    Article  CAS  Google Scholar 

  32. C.A. Poland, R. Duffin, I. Kinloch et al., Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423 (2008). https://doi.org/10.1038/nnano.2008.111

    Article  CAS  PubMed  Google Scholar 

  33. K. Soga, M. Kamimura, K. Okubo et al., Near-infrared biomedical imaging for transparency. Journal of the Imaging Society of Japan 58, 602 (2019). https://doi.org/10.11370/isj.58.602

    Article  CAS  Google Scholar 

  34. L. Ma-Hock, V. Strauss, S. Treumann et al., Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part. Fibre Toxicol. 10, 23 (2013). https://doi.org/10.1186/1743-8977-10-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. K. Yan, F. Zhao, S. Li et al., Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3, 362 (2011). https://doi.org/10.1039/c0nr00647e

    Article  CAS  PubMed  Google Scholar 

  36. T.L. Moore, J.E. Pitzer, R. Podila et al., Multifunctional polymer-coated carbon nanotubes for safe drug delivery. Part. Part. Syst. Charact. 30, 365 (2013). https://doi.org/10.1002/ppsc.201200145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J.J. Castillo, T. Rindzevicius, L.V. Novoa et al., Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells over-expressing folate receptors. J. Mater. Chem. B 1, 1475 (2013). https://doi.org/10.1039/C2TB00434H

    Article  CAS  PubMed  Google Scholar 

  38. Y. Iizumi, T. Okazaki, Y. Ikehara et al., Immunoassay with single-walled carbon nanotubes as near-infrared fluorescent labels. ACS Appl. Mater. Interfaces. 5, 7665 (2013). https://doi.org/10.1021/am401702q

    Article  CAS  PubMed  Google Scholar 

  39. J.H. Kim, D.A. Heller, H. Jin et al., The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat. Chem. 1, 473 (2009). https://doi.org/10.1038/nchem.332

    Article  CAS  PubMed  Google Scholar 

  40. J. Zhang, M.P. Landry, P.W. Barone et al., Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8, 959 (2013). https://doi.org/10.1038/nnano.2013.236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Kruss, M.P. Landry, E.V. Ende et al., Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J. Am. Chem. Soc. 136, 713 (2014). https://doi.org/10.1021/ja410433b

    Article  CAS  PubMed  Google Scholar 

  42. Q. Zhang, H. Zhou, B. Yan, Reducing nanotube cytotoxicity using a nano-combinatorial library approach. Methods Mol. Biol. 625, 95 (2010). https://doi.org/10.1007/978-1-60761-579-8_9

    Article  CAS  PubMed  Google Scholar 

  43. M. Pannuzzo, S. Esposito, L.P. Wu et al., Overcoming nanoparticle-mediated complement activation by surface PEG pairing. Nano Lett. 20, 4312 (2020). https://doi.org/10.1021/acs.nanolett.0c01011

    Article  CAS  PubMed  Google Scholar 

  44. W.G. Kreyling, M. Semmler-Behnke, J. Seitz et al., Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal. Toxicol. 21(Suppl 1), 55 (2009). https://doi.org/10.1080/08958370902942517

    Article  CAS  PubMed  Google Scholar 

  45. W.G. Kreyling, M. Semmler, F. Erbe et al., Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 65, 1513 (2002). https://doi.org/10.1080/00984100290071649

    Article  CAS  PubMed  Google Scholar 

  46. G. Oberdörster, Z. Sharp, V. Atudorei et al., Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health A 65, 1531 (2002). https://doi.org/10.1080/00984100290071658

    Article  CAS  PubMed  Google Scholar 

  47. H.S. Choi, Y. Ashitate, J.H. Lee et al., Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol. 28, 1300 (2010). https://doi.org/10.1038/nbt.1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. P. Wick, A. Malek, P. Manser et al., Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 118, 432 (2010). https://doi.org/10.1289/ehp.0901200

    Article  CAS  PubMed  Google Scholar 

  49. K. Takeda, K. Suzuki, A. Ishihara et al., Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J. Health Sci. 55, 95 (2009). https://doi.org/10.1248/jhs.55.95

    Article  CAS  Google Scholar 

  50. K. Yamashita, Y. Yoshioka, K. Higashisaka et al., Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol. 6, 321 (2011). https://doi.org/10.1038/nnano.2011.41

    Article  CAS  PubMed  Google Scholar 

  51. T. Notter, L. Aengenheister, U. Weber-Stadlbauer et al., Prenatal exposure to TiO2 nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. Transl. Psychiatry 8, 193 (2018). https://doi.org/10.1038/s41398-018-0251-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. A. Onoda, K. Takeda, M. Umezawa, Dose-dependent induction of astrocyte activation and reactive astrogliosis in mouse brain following maternal exposure to carbon black nanoparticle. Part. Fibre. Toxicol. 14, 4 (2017). https://doi.org/10.1186/s12989-017-0184-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M. Umezawa, A. Onoda, I. Korshunova et al., Maternal inhalation of carbon black nanoparticles induces neurodevelopmental changes in mouse offspring. Part. Fibre. Toxicol. 15, 36 (2018). https://doi.org/10.1186/s12989-018-0272-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Y. Hao, J. Liu, Y. Feng et al., Molecular evidence of offspring liver dysfunction after maternal exposure to zinc oxide nanoparticles. Toxicol. Appl. Pharmacol. 329, 318 (2017). https://doi.org/10.1016/j.taap.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  55. N. Bara, M. Eshwarmoorthy, K. Subaharan K, et al., Mesoporous silica nanoparticle is comparatively safer than zinc oxide nanoparticle which can cause profound steroidogenic effects on pregnant mice and male offspring exposed in utero. Toxicol. Ind. Health. 34, 507 (2018). https://doi.org/10.1177/0748233718757641

  56. Z.O. Kyjovska, A.M.Z. Boisen, P. Jackson et al., Daily sperm production: application in studies of prenatal exposure to nanoparticles in mice. Reprod. Toxicol. 36, 88 (2013). https://doi.org/10.1016/j.reprotox.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  57. S. Yoshida, K. Hiyoshi, S. Oshio et al., Effects of fetal exposure to carbon nanoparticles on reproductive function in male offspring. Fertil. Steril. 93, 1695 (2010). https://doi.org/10.1016/j.fertnstert.2009.03.094

    Article  CAS  PubMed  Google Scholar 

  58. M. Riediker, D. Zink, W. Kreyling et al., Particle toxicology and health—where are we? Part. Fibre. Toxicol. 16, 19 (2019). https://doi.org/10.1186/s12989-019-0302-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. J.P. Ryman-Rasmussen, M.F. Cesta, A.R. Brody et al., Inhaled Carbon Nanotubes Reach the Subpleural Tissue in Mice. Nat. Nanotechnol. 4, 747 (2009). https://doi.org/10.1038/nnano.2009.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. K. Donaldson, C.A. Poland, New insights into nanotubes. Nat. Nanotechnol. 4, 708 (2009). https://doi.org/10.1038/nnano.2009.327

    Article  CAS  PubMed  Google Scholar 

  61. R. Singh, D. Pantarotto, L. Lacerda. et al., Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Sci. USA, 103, 3357 (2006). https://doi.org/10.1073/pnas.0509009103

  62. S.T. Yang, K.A.S. Fernando, J.H. Liu et al., Covalently PEGylated carbon nanotubes with stealth character in vivo. Small 4, 940 (2008). https://doi.org/10.1002/smll.200700714

    Article  CAS  PubMed  Google Scholar 

  63. Z. Liu, W. Cai, L. He et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47 (2007). https://doi.org/10.1038/nnano.2006.170

    Article  CAS  PubMed  Google Scholar 

  64. P. Cherukuri, C.J. Gannon, T.K. Leeuw, et al., Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA, 103, 18882 (2006). https://doi.org/10.1073/pnas.0609265103

  65. Z. Liu, C. Davis, W. Cai, et al., Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA. 105, 1410 (2008). https://doi.org/10.1073/pnas.0707654105

  66. S. Jain, V.S. Thakare, M. Das et al., Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem. Res. Toxicol. 24, 2028 (2011). https://doi.org/10.1021/tx2003728

    Article  CAS  PubMed  Google Scholar 

  67. X. Deng, G. Jia, H. Wang et al., Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45, 1419 (2007). https://doi.org/10.1016/j.carbon.2007.03.035

    Article  CAS  Google Scholar 

  68. H. Wang, J. Wang, X. Deng et al., Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4, 1019 (2004). https://doi.org/10.1166/jnn.2004.146

    Article  CAS  PubMed  Google Scholar 

  69. J.E. Riviere, Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 26 (2009). https://doi.org/10.1002/wnan.24

    Article  CAS  PubMed  Google Scholar 

  70. T. Takeuchi, Y. Iizumi, M. Yudasaka et al., Characterization and biodistribution analysis of oxygen-doped single-walled carbon nanotubes used as in vivo fluorescence imaging probes. Bioconjugate Chem. 30, 1323 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00088

    Article  CAS  Google Scholar 

  71. H. Mao, N. Kawazoe, G. Chen, Uptake and intracellular distribution of collagen-functionalized single-walled carbon nanotubes. Biomaterials 34, 2472 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  72. K. Kostarelos, L. Lacerda, G. Pastorin et al., Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108 (2007). https://doi.org/10.1038/nnano.2006.209

    Article  CAS  PubMed  Google Scholar 

  73. H. Jin, D.A. Heller, R. Sharma et al., Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3, 149 (2009). https://doi.org/10.1021/nn800532m

    Article  CAS  PubMed  Google Scholar 

  74. F. Tian, D. Cui, H. Schwarz et al., Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20, 1202 (2006). https://doi.org/10.1016/j.tiv.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  75. L.A. Mitchell, F.T. Lauer, S.W. Burchiel et al., Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat. Nanotechnol. 4, 451 (2009). https://doi.org/10.1038/nnano.2009.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. A. Erdely, T. Hulderman, R. Salmen, et al., Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett. 9, 36 (2009). https://doi.org/10.1021/nl801828z

  77. I. Lynch, Far-reaching effects from carbon nanotubes. Nat. Nanotechnol. 14, 639 (2019). https://doi.org/10.1038/s41565-019-0477-z

    Article  CAS  PubMed  Google Scholar 

  78. V.C. Sanchez, J.R. Pietruska, N.R. Miselis et al., Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 511 (2009). https://doi.org/10.1002/wnan.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. A. Takagi, A. Hirose, T. Nishimura et al., Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 33, 105 (2008). https://doi.org/10.2131/jts.33.105

    Article  CAS  PubMed  Google Scholar 

  80. J. Muller, F. Huaux, N. Moreau et al., Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207, 221 (2005). https://doi.org/10.1016/j.taap.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  81. H. Nagai, T. Toyokuni, Biopersistent fiber-induced inflammation and carcinogenesis: lessons learned from asbestos toward safety of fibrous nanomaterials. Arch. Biochem. Biophys. 502, 1 (2010). https://doi.org/10.1016/j.abb.2010.06.015

    Article  CAS  PubMed  Google Scholar 

  82. J.M. Dymacek, B.N. Snyder-Talkington, R. Raese et al., Similar and differential canonical pathways and biological processes associated with multiwalled carbon nanotube and asbestos-induced pulmonary fibrosis: a 1-year postexposure study. Int. J. Toxicol. 37, 276 (2018). https://doi.org/10.1177/1091581818779038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. G.M. Mutlu, G.R. Budinger, A.A. Green et al., Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett. 10, 1664 (2010). https://doi.org/10.1021/nl9042483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. P. Wick, P. Manser, L.K. Limbach et al., The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168, 121 (2007). https://doi.org/10.1016/j.toxlet.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  85. H. Nagai, Y. Okazaki, S.H. Chew, et al., Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl. Acad. Sci. USA. 108, E1330 (2011). https://doi.org/10.1073/pnas.1110013108

  86. K.K. Jain, Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert Opin. Drug Discov. 7, 1029 (2012). https://doi.org/10.1517/17460441.2012.722078

    Article  CAS  PubMed  Google Scholar 

  87. M. Kamimura, N. Kanayama, K. Tokuzen et al., Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly (4-vinylbenzylphosphonate). Nanoscale 3, 3705 (2011). https://doi.org/10.1039/C1NR10466G

    Article  CAS  PubMed  Google Scholar 

  88. R.P. Singh, G. Sharma, Sonali, et al., Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater. Sci. Eng. C Mater. Biol. Appl., 67, 313 (2016). https://doi.org/10.1016/j.msec.2016.05.013

  89. Y. Teow, P.V. Asharani, M.P. Hande et al., Health impact and safety of engineered nanomaterials. Chem. Commun. (Camb.) 47, 7025 (2011). https://doi.org/10.1039/c0cc05271j

    Article  CAS  Google Scholar 

  90. J.H. Shannahan, J.M. Brown, R. Chen et al., Comparison of nanotube-protein corona composition in cell culture media. Small 9, 2171 (2013). https://doi.org/10.1002/smll.201202243

    Article  CAS  PubMed  Google Scholar 

  91. D. Dutta, S.K. Sundaram, J.G. Teeguarden et al., Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100, 303 (2007). https://doi.org/10.1093/toxsci/kfm217

    Article  CAS  PubMed  Google Scholar 

  92. H. Zhou, Q. Mu, N. Gao et al., A Nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett. 8, 859 (2008). https://doi.org/10.1021/nl0730155

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuto Onoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onoda, A., Umezawa, M. (2021). Carbon Nanotubes—Potential of Use for Deep Bioimaging. In: Soga, K., Umezawa, M., Okubo, K. (eds) Transparency in Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9627-8_5

Download citation

Publish with us

Policies and ethics