Skip to main content

Recent Advancements in Medical Imaging: A Machine Learning Approach

  • Chapter
  • First Online:
Machine Learning for Intelligent Multimedia Analytics

Part of the book series: Studies in Big Data ((SBD,volume 82))

Abstract

This chapter discusses the importance of machine learning in the field of medical imaging for reconstructing medical images from the measured raw data. Besides discussing the use of machine learning for medical image reconstruction, a general overview is also provided on all the existing techniques of medical imaging. Mathematical models are provided in order to understand better the use of machine learning for reconstruction purposes. We discuss both unsupervised techniques like dictionary learning, auto-encoders, and supervised techniques which include learning of hyperparameters and various regularization methods used in deep learning models that replace various steps in iterative algorithms used for image reconstruction such as for image enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Blitz, G. Simpson, Ultrasonic Methods of Non-destructive Testing, vol. 2 (Springer Science & Business Media, Berlin, 1995)

    Google Scholar 

  2. P. Gong, P. Song, S. Chen, Ultrafast synthetic transmit aperture imaging using Hadamard-encoded virtual sources with overlapping sub-apertures. IEEE Trans. Med. Imaging 36(6), 1372–1381 (2017)

    Article  Google Scholar 

  3. A. Averbuch, I. Sedelnikov, Y. Shkolnisky, CT reconstruction from parallel and fan-beam projections by a 2-D discrete Radon transform. IEEE Trans. Image Process. 21(2), 733–741 (2011)

    Google Scholar 

  4. P.P.B. Eggermont, Multiplicative iterative algorithms for convex programming. Linear Algebra Appl. 130, 25–42 (1990)

    Google Scholar 

  5. C. Samson, L. Blanc-Féraud, G. Aubert, J. Zerubia, A variational model for image classification and restoration. IEEE Trans. Pattern Anal. Mach. Intell. 22(5), 460–472 (2000)

    Google Scholar 

  6. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation-based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  7. M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  8. K. Bredies, T. Valkonen, Inverse problems with second-order total generalized variation constraints, in Proceedings of SampTA 2011 (2011)

    Google Scholar 

  9. F. Pesapane, M. Codari, F. Sardanelli, Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2(1), 35 (2018)

    Article  Google Scholar 

  10. K. Suzuki (ed.), Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis (IGI Global, USA, 2012)

    Google Scholar 

  11. P.M.A. Ooijen, Quality and curation of medical images and data, in Artificial Intelligence in Medical Imaging (Springer, Cham, 2019), pp 247–255

    Google Scholar 

  12. L.C. Jain, M. Seera, C.P. Lim, P. Balasubramaniam, A review of online learning in supervised neural networks. Neural Comput. Appl. 25(3–4), 491–509 (2014)

    Google Scholar 

  13. B. Colson, P. Marcotte, G. Savard, An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)

    Article  MathSciNet  Google Scholar 

  14. S. Roth, M.J. Black, Fields of experts: a framework for learning image priors, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2 (IEEE, 2005), pp. 860–867

    Google Scholar 

  15. Z. Yang, Z. Fu, K. Zhang, Z. Wang, Convergent reinforcement learning with function approximation: a bilevel optimization perspective (2018)

    Google Scholar 

  16. J.Z. Liang, R. Miikkulainen, Evolutionary bilevel optimization for complex control tasks, in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (2015), pp. 871–878

    Google Scholar 

  17. P. Chatterjee, S. Mukherjee, S. Chaudhuri, G. Seetharaman, Application of Papoulis-Gerchberg method in image super-resolution and inpainting. Comput. J. 52(1), 80–89 (2009)

    Article  Google Scholar 

  18. F. Heide, M. Steinberger, Y.-T. Tsai, M. Rouf, D. Pająk, D. Reddy, O. Gallo et al., Flexisp: a flexible camera image processing framework. ACM Trans. Graph. (TOG) 33(6), 1–13 (2014)

    Google Scholar 

  19. S.V. Venkatakrishnan, C.A. Bouman, B. Wohlberg, Plug-and-play priors for model-based reconstruction, in 2013 IEEE Global Conference on Signal and Information Processing (IEEE, 2013), pp. 945–948

    Google Scholar 

  20. A. Buades, B. Coll, J.-M. Morel, Non-local means denoising. Image Process. OnLine 1, 208–212 (2011)

    MATH  Google Scholar 

  21. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  22. T. Meinhardt, M. Moller, C. Hazirbas, D. Cremers, Learning proximal operators: using denoising networks for regularizing inverse imaging problems, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 1781–1790

    Google Scholar 

  23. L. Landweber, An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73(3), 615–624 (1951)

    Article  MathSciNet  Google Scholar 

  24. H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, T. Flohr, Adaptive iterative reconstruction, in Medical Imaging 2011: Physics of Medical Imaging, vol. 7961 (International Society for Optics and Photonics, 2011), p. 79610J

    Google Scholar 

  25. A. Beck, M. Teboulle, A fast-iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  26. I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 57(11), 1413–1457 (2004)

    Google Scholar 

  27. S. Diamond, V. Sitzmann, F. Heide, G. Wetzstein, Unrolled optimization with deep priors.arXiv preprint arXiv:1705.08041 (2017)

  28. J. Schlemper, J. Caballero, J.V. Hajnal, A. Price, D. Rueckert, A deep cascade of convolutional neural networks for MR image reconstruction, in International Conference on Information Processing in Medical Imaging (Springer, Cham, 2017), pp. 647–658

    Google Scholar 

  29. K.H. Jin, M. Unser, 3D BBPConvNet to reconstruct parallel MRI, in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (IEEE, 2018), pp. 361–364

    Google Scholar 

  30. K. Kwon, D. Kim, H.W. Park, A parallel MR imaging method using multilayer perceptron. Med. Phys. 44(12), 6209–6224 (2017)

    Article  Google Scholar 

  31. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  32. J. Timmer, Metal artifact correction in computed tomography. U.S. Patent 7,340,027, issued March 4, 2008

    Google Scholar 

  33. W. Lu, K.B. Pauly, G.E. Gold, J.M. Pauly, B.A. Hargreaves, SEMAC: slice encoding for metal artifact correction in MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 62(1), 66–76 (2009)

    Google Scholar 

  34. J. Xu, E. Gong, J. Pauly, G. Zaharchuk, 200x low-dose PET reconstruction using deep learning. arXiv preprint arXiv:1712.04119 (2017)

  35. L. Xiang, Y. Qiao, D. Nie, L. An, W. Lin, Q. Wang, D. Shen, Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing 267, 406–416 (2017)

    Google Scholar 

  36. S. Antholzer, M. Haltmeier, J. Schwab, Deep learning for photoacoustic tomography from sparse data. Inverse Probl. Sci. Eng. 27(7), 987–1005 (2019)

    Article  MathSciNet  Google Scholar 

  37. J. Schwab, S. Antholzer, R. Nuster, M. Haltmeier, DALNet: high-resolution photoacoustic projection imaging using deep learning. arXiv preprint arXiv:1801.06693 (2018), pp. 1–18

  38. H.S. Park, S.M. Lee, H.P. Kim, J.K. Seo, Y.E. Chung, CT sinogram—consistency learning for metal-induced beam hardening correction. Med. Phys. 45(12), 5376–5384 (2018)

    Google Scholar 

  39. B.E.H. Claus, Y. Jin, L.A. Gjesteby, G. Wang, B. De Man, Metal-artifact reduction using deep-learning based sinogram completion: initial results, in Proceedings of 14th International Meeting Fully Three-Dimensional Image Reconstruction Radiology and Nuclear Medicine (2017), pp. 631–634

    Google Scholar 

  40. Bo. Zhu, J.Z. Liu, S.F. Cauley, B.R. Rosen, M.S. Rosen, Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

  41. M.S. Rosen, B. Zhu, B.R. Rosen, System and method for automated transform by manifold approximation. U.S. Patent Application 16/326,910, filed July 11, 2019

    Google Scholar 

  42. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2009), pp. 248–255

    Google Scholar 

  43. Li. Fei-Fei, J. Deng, K. Li, ImageNet: constructing a large-scale image database. J. Vis. 9(8), 1037 (2009)

    Google Scholar 

  44. C. Bycroft, C. Freeman, D. Petkova, G. Band, L.T. Elliott, K. Sharp, A. Motyer et al., The UK biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209 (2018)

    Google Scholar 

  45. L. Gjesteby, H. Shan, Q. Yang, Y. Xi, B. Claus, Y. Jin, B. De Man, G. Wang, Deep neural network for CT metal artifact reduction with a perceptual loss function, in Proceedings of the Fifth International Conference on Image Formation in X-ray Computed Tomography, vol. 1 (2018)

    Google Scholar 

  46. C. Quinsac, A. Basarab, D. Kouamé, J.-M. Grégoire. 3D compressed sensing ultrasound imaging, in 2010 IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 363–366

    Google Scholar 

  47. W. Yuanji, L. Jianhua, L. Yi, F. Yao, J. Qinzhong, Image quality evaluation based on image weighted separating block peak signal to noise ratio, in International Conference on Neural Networks and Signal Processing, 2003, vol. 2 (IEEE, 2003), pp. 994–997

    Google Scholar 

  48. R. Dosselmann, X.D. Yang, A comprehensive assessment of the structural similarity index. Signal Image Video Process. 5(1), 81–91 (2011)

    Google Scholar 

  49. D. Brunet, E.R. Vrscay, Z. Wang, On the mathematical properties of the structural similarity index. IEEE Trans. Image Process. 21(4), 1488–1499 (2011)

    Article  MathSciNet  Google Scholar 

  50. Z. Wang, E.P. Simoncelli, A.C. Bovik, Multiscale structural similarity for image quality assessment, in The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2 (IEEE, 2003), pp. 1398–1402

    Google Scholar 

  51. Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M.K. Kalra, Y. Zhang, L. Sun, G. Wang, Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)

    Google Scholar 

  52. M. Ran, J. Hu, Y. Chen, H. Chen, H. Sun, J. Zhou, Y. Zhang, Denoising of 3D magnetic resonance images using a residual encoder–decoder Wasserstein generative adversarial network. Med. Image Anal. 55, 165–180 (2019)

    Google Scholar 

  53. J.M. Wolterink, T. Leiner, M.A. Viergever, I. Išgum, Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017)

    Google Scholar 

  54. F. Thaler, K. Hammernik, C. Payer, M. Urschler, D. Štern, Sparse-view CT reconstruction using wassersteinGANs, in International Workshop on Machine Learning for Medical Image Reconstruction (Springer, Cham, 2018), pp. 75–82

    Google Scholar 

  55. M. Seitzer, G. Yang, J. Schlemper, O. Oktay, T. Würfl, V. Christlein, T. Wong et al.,Adversarial and perceptual refinement for compressed sensing MRI reconstruction, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Cham, 2018), pp. 232–240

    Google Scholar 

  56. D. Shen, Wu. Guorong, H.-I. Suk, Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  57. S. Ravishankar, Y. Bresler, MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2010)

    Article  Google Scholar 

  58. Q. Xu, H. Yu, X. Mou, L. Zhang, J. Hsieh, G. Wang, Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans. Med. Imaging 31(9), 1682–1697 (2012)

    Google Scholar 

  59. A. Makhzani, B. Frey, K-sparse autoencoders. arXiv preprint arXiv:1312.5663 (2013)

  60. L. Gondara, Medical image denoising using convolutional denoisingautoencoders, in 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW) (IEEE, 2016), pp. 241–246

    Google Scholar 

  61. B. Yang, S. Li, Pixel-level image fusion with simultaneous orthogonal matching pursuit. Inf. Fusion 13(1), 10–19 (2012)

    Article  Google Scholar 

  62. M. Sajjad, I. Mehmood, S. WookBaik, Sparse coded image super-resolution using K-SVD trained dictionary based on regularized orthogonal matching pursuit. Bio-Med. Mater. Eng. 26(s1), S1399–S1407 (2015)

    Article  Google Scholar 

  63. S. Li, H. Yin, L. Fang, Group-sparse representation with dictionary learning for medical image denoising and fusion. IEEE Trans. Biomed. Eng. 59(12), 3450–3459 (2012)

    Article  Google Scholar 

  64. L. Wang, Lu. Ke, P. Liu, R. Ranjan, L. Chen, IK-SVD: dictionary learning for spatial big data via incremental atom update. Comput. Sci. Eng. 16(4), 41–52 (2014)

    Article  Google Scholar 

  65. K. Kreutz-Delgado, J.F. Murray, B.D. Rao, K. Engan, T.-W. Lee, T.J. Sejnowski, Dictionary learning algorithms for sparse representation. Neural Comput. 15(2), 349–396 (2003)

    Google Scholar 

  66. I. Tosic, P. Frossard, Dictionary learning. IEEE Signal Process. Mag. 28(2), 27–38 (2011)

    Article  Google Scholar 

  67. K. Hammernik, F. Knoll, Machine learning for image reconstruction, in Handbook of Medical Image Computing and Computer Assisted Intervention (Academic Press, Cambridge, 2020), pp. 25–64

    Google Scholar 

  68. J. Wang, J. Liang, J. Cheng, Y. Guo, Li. Zeng, Deep learning based image reconstruction algorithm for limited-angle translational computed tomography. PLoS ONE 15(1), e0226963 (2020)

    Article  Google Scholar 

  69. H.-M. Zhang, B. Dong, A review on deep learning in medical image reconstruction. J. Oper. Res. Soc. China 1–30 (2020)

    Google Scholar 

  70. D. Wu, K. Kim, G. El Fakhri, Q. Li, Iterative low-dose CT reconstruction with priors trained by artificial neural network.IEEE Trans. Med. Imaging 36(12), 2479–2486 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dang, N., Tiwari, S., Khurana, M., Arya, K.V. (2021). Recent Advancements in Medical Imaging: A Machine Learning Approach. In: Kumar, P., Singh, A.K. (eds) Machine Learning for Intelligent Multimedia Analytics. Studies in Big Data, vol 82. Springer, Singapore. https://doi.org/10.1007/978-981-15-9492-2_10

Download citation

Publish with us

Policies and ethics