Skip to main content

DNA Profiling in Forensic Odontology

  • Living reference work entry
  • First Online:
Handbook of DNA Profiling

Abstract

Right to identity is the fundamental human right, and the extensive efforts have continuously been made to identify unknown human remains after mass disasters like tsunami, cyclones, earthquakes, etc. as well as wars where a large number of unidentified human remains are encountered. Not only this, many times victims of homicide killed brutally with face disfigurement, fire accidents, acid attacks, etc. which cannot be identified from physiognomic characteristics also require identification. In such cases, the forensic analyses are often complicated by sample degradation due to exposure to harsh environmental conditions. DNA profiling has become a standard tool for identification of unknown remains in forensic laboratories. The distinctive structure of teeth and their location in the jawbone make them a preferred source of DNA as compared to bones and other tissues. This chapter outlines the role of DNA profiling in forensic odontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adler C, Haak W, Donlon D, Cooper A, Consortium, T (2011) Survival and recovery of DNA from ancient teeth and bones. J Archaeol Sci 38:956–964

    Article  Google Scholar 

  • Angelique C (2007) University helps with pharaoh’s identity. Br Dent J 203(3):123–123

    Google Scholar 

  • Beckett SM, Laughton SJ, Pozza LD, McCowage GB, Marshall G, Cohn RJ, Milne E, Ashton LJ (2008) Buccal swabs and treated cards: methodological considerations for molecular epidemiologic studies examining pediatric populations. Am J Epidemiol 167(10):1260–1267

    Article  Google Scholar 

  • Boles TC, Snow CC, Stover E (1995) Forensic DNA testing on skeletal remains from mass graves: a pilot project in Guatemala. J Forensic Sci 40(3):13786J

    Article  Google Scholar 

  • Brown KA (1984) Dental identification of unknown bodies. Ann Acad Med Singap 13(1):3–7

    CAS  PubMed  Google Scholar 

  • Buchner A (1985) The identification of human remains. Int Dent J 35(4):307–311

    CAS  PubMed  Google Scholar 

  • Budowle B, van Daal A (2008) Forensically relevant SNP classes. BioTechniques 44(5):603–610

    Article  CAS  Google Scholar 

  • Butler J (2014) Advanced topics in forensic DNA typing. Academic

    Google Scholar 

  • da Silva RHA, Sales-Peres A, de Oliveira RN, de Oliveira FT, Sales-Peres SH d C (2007) Use of DNA technology in forensic dentistry. J Appl Oral Sci [Online] 15(3):156–161. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327460/

    Article  Google Scholar 

  • David TJ, Lewis JM (2018) Forensic odontology: principles and practice. Academic, London

    Google Scholar 

  • Fuentes A, Sanchez C (2017) New trends in biomarkers and diseases research: an overview, 1st edn. Bentham Science Publishers, pp 436–468

    Book  Google Scholar 

  • Ginther C, Issel T, King M (1992) Identifying individuals by sequencing mitochondrial DNA from teeth. Nat Genet 2(2):135–138

    Article  CAS  Google Scholar 

  • Harada R, Watanabe K, Shirasu S, Kato M, Daito M (2009) DNA microarray analysis of dental pulp fibroblasts exfoliated from deciduous teeth. Pediatr Dent J 19(1):38–45

    Article  CAS  Google Scholar 

  • Higgins D, Rohrlach AB, Kaidonis J, Townsend G, Austin JJ (2015) Differential nuclear and mitochondrial DNA preservation in post-mortem teeth with implications for forensic and ancient DNA studies. PLoS One, [Online] 10(5):e0126935

    Article  Google Scholar 

  • Hinchliffe J (2011) Forensic odontology, Part 1. Dental identification. Br Dent J 210(5):219–224. https://doi.org/10.1038/sj.bdj.2011.146

    Article  CAS  PubMed  Google Scholar 

  • Hutchison C, Newbold J, Potter S, Edgell M (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251(5475):536–538

    Article  CAS  Google Scholar 

  • Inostroza C, Carrasco P, Godoy M, Gatti G, Paulino B (2020) Dental forensic kit (DFK®) and quick extractâ„¢ FFPE DNA extraction kit, a new workflow for obtaining dental DNA for human genetic identity. J Forensic Legal Med 73:101992

    Article  Google Scholar 

  • Kuo WP, Whipple ME, Jenssen T-K, Todd R, Epstein JB, Ohno-Machado L, Sonis ST, Park PJ (2003) Microarrays and clinical dentistry. J Am Dent Assoc 134(4):456–462

    Article  CAS  Google Scholar 

  • Li L, Li C, Li R, Liu Y, Lin Y, Que T, Sun M, Li Y (2006) SNP genotyping by multiplex amplification and microarrays assay for forensic application. Forensic Sci Int 162(1–3):74–79

    Article  CAS  Google Scholar 

  • Malaver P, Yunis J (2003) Different dental tissues as source of DNA for human identification in forensic cases. Croat Med J 44(3):306–309

    PubMed  Google Scholar 

  • Morikawa T, Yamamoto Y, Miyaishi S (2011) A new method for sex determination based on detection of SRY, STS and amelogenin gene regions with simultaneous amplification of their homologous sequences by a multiplex PCR. Acta Med Okayama 65(2):113–122

    CAS  PubMed  Google Scholar 

  • Muruganandhan J, Sivakumar G (2011) Practical aspects of DNA-based forensic studies in dentistry. J Forensic Dent Sci 3(1):38

    Article  CAS  Google Scholar 

  • Nakahori Y, Hamano K, Iwaya M, Nakagome Y (1991) Sex identification by polymerase chain reaction using X-Y homologous primer. Am J Med Genet 39(4):472–473

    Article  CAS  Google Scholar 

  • Nanci A, Tencate A (2012) Ten cate’s oral histology. Mosby Elsevier, St. Louis

    Google Scholar 

  • Norrgard K (2008) Forensics, DNA fingerprinting, and CODIS. Nat Educ 1(1):35

    Google Scholar 

  • Parolin C, Giordani B, Ñahui Palomino RA, Biagi E, Severgnini M, Consolandi C, Caredda G, Storelli S, Strohmenger L, Vitali B (2017) Design and validation of a DNA-microarray for phylogenetic analysis of bacterial communities in different oral samples and dental implants. Sci Rep 7(1):6280

    Article  Google Scholar 

  • Pereira V, Gusmão L (2013) Encyclopedia of forensic sciences, 2nd edn. Academic Press

    Google Scholar 

  • Petju M, Suteerayongprasert A, Thongpud R, Hassiri K (2007) Importance of dental records for victim identification following the Indian Ocean tsunami disaster in Thailand. Public Health [Online] 121(4):251–257

    Article  CAS  Google Scholar 

  • Pötsch L, Meyer U, Rothschild S, Schneider PM, Rittner C (1992) Application of DNA techniques for identification using human dental pulp as a source of DNA. Int J Legal Med 105(3):139–143

    Article  Google Scholar 

  • Raymond J, Roland A, Oorschot V, Gunn P, Walsh S, Roux C (2009) Trace evidence characteristics of DNA: a preliminary investigation of the persistence of DNA at crime scenes. Forensic Sci Int Genet 4(1):26–33

    Article  CAS  Google Scholar 

  • Riaud X (2016) The dental identification of the Egyptian Queen Hatshepsut. J Dent Oral Care Med 2(1). https://doi.org/10.15744/2454-3276.2.108

  • Singh UA, Kumari M, Iyengar S (2018) Method for improving the quality of genomic DNA obtained from minute quantities of tissue and blood samples using Chelex 100 resin. Biol Proc Online [Online] 20(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984428/

  • Smithsonian Magazine (2020) Egyptian Mummy identified as legendary Hatshepsut. [Online] https://www.smithsonianmag.com/science-nature/egyptian-mummy-identified-as-legendary-hatshepsut-180940772/. Accessed 8 Dec 2020

  • Sullivan K, Mannucci A, Kimpton C, Gill, l P. (1993) A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. BioTechniques 15(4):640–641

    Google Scholar 

  • Sweet D, Hildebrand D (1998) Recovery of DNA from human teeth by cryogenic grinding. J Forensic Sci 43(6):14385J

    Article  Google Scholar 

  • Sweet D, Sweet C (1995) DNA analysis of dental pulp to link incinerated remains of homicide victim to crime scene. J Forensic Sci 40(2):15365J

    Article  Google Scholar 

  • Takayasu L, Suda W, Takanashi K, Iioka E, Kurokawa R, Shindo C, Hattori Y, Yamashita N, Nishijima S, Oshima K, Hattori M (2017) Circadian oscillations of microbial and functional composition in the human salivary microbiome. DNA Res 24(3):261–270

    Article  CAS  Google Scholar 

  • Verogen I (2020) Next-generation sequencing workflow for severely degraded DNA. [Online] News-Medical.net. https://www.news-medical.net/whitepaper/20200211/Parallel-Sequencing-Workflow-for-Severely-Degraded-DNA.aspx. Accessed 8 Dec 2020

  • Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics [Online] 12(5):190–197. https://www.sciencedirect.com/science/article/pii/S1672022914001053

    Article  Google Scholar 

  • ZiÄ™tkiewicz E, Witt M, Daca P, Å»ebracka-Gala J, Goniewicz M, JarzÄ…b B, Witt M (2011) Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet [Online] 53(1):41–60. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265735/

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Puri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Puri, P., Dubey, M.K., Kumar, N. (2021). DNA Profiling in Forensic Odontology. In: Dash, H.R., Shrivastava, P., Lorente, J.A. (eds) Handbook of DNA Profiling. Springer, Singapore. https://doi.org/10.1007/978-981-15-9364-2_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9364-2_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9364-2

  • Online ISBN: 978-981-15-9364-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics