Skip to main content
Log in

Application of DNA techniques for identification using human dental pulp as a source of DNA

  • Original Articles
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Summary

Dental pulp tissue could be obtained in most cases from materials obtained under experimental conditions and from forensic casework (air accidents, burned and putrefied bodies). Teeth extracted during dental treatment (n = 30) were stored for 6 weeks and 4 years at room temperature. In addition teeth (n = 10) extracted from jaw fragments that had been stored for 15 years at room temperature, and teeth extracted post mortem from actual identification cases (n = 8) were investigated. Following extraction from dental pulp tissue the DNA concentration was measured by fluorometry. The amount of DNA obtained from the dental pulp tissue of a single tooth varied from 6 μg to 50 μg DNA. In most cases high molecular weight DNA was still present although the major portion consisted of degraded DNA. Genomic dot blot hybridization for sex determination using the biotinylated repetitive DNA probe pHY 2.1 was performed and sex was correctly classified in all cases using 50–100 ng target DNA. PCR typing of the HLA-DQα and ApoB 3′ VNTR systems from dental pulp tissue DNA was in agreement with the results obtained from blood, bloodstains, or lung tissue. In addition, Southern blot analysis of selected samples using the single locus VNTR probe pYNH24 was successfully performed. In all cases the DNA recovered from dental pulp was unsuitable for multilocus probe analysis.

Zusammenfassung

Zur Untersuchung gelangten anläßlich einer Zahnbehandlung extrahierte Zähne nach einer Liegezeit bei Raumtemperatur von 6 Wochen (n = 20) bis zu 4 Jahren (n = 10) sowie postmortem extrahierte Zähne von aktuellen Identifikationsfällen (n = 8) und einem Flugzeugabsturz des Jahres 1976 (n = 10). Die Zahnpulpa wurde präpariert und eine DNA Extraktion vorgenommen. Die Ausbeute betrug 6 μg bis 50 μg DNA pro Zahn. In den meisten Fällen war neben degradierter DNA noch hochmolekulare DNA vorhanden. Die Geschlechtsbestimmung erfolgte durch Dot-Hybridisierung mit der biotinylierten repetitiven DNA-Sonde pHY 2.1. In allen Fällen konnte das Geschlecht mit 50–100 ng Ziel-DNA zutreffend bestimmt werden. An genetischen Markern nach DNA-Amplifikation durch PCR erfolgte eine Typisierung der HLA-DQα und ApoB 3′ VNTR Merkmale. Die Resultate zeigten Übereinstimmung mit den Genotypen, die an Blut, Blutspuren oder Lungengewebe ermittelt wurden. Southern Blot-Analysen mit Minisatelliten-DNA-Sonden ergaben auswertbare Resultate mit der Einzellocus-Sonde pYNH24, während eine Multilocus-Sonden-Hybridisierung der aus den Zahnpulpen isolierten DNA nicht gelang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCIP:

5-bromo-4-chloro-3-indolylphosphate

RFLP:

Restriction fragment length polymorphism

VNTR:

Variable number of tandem repeats

AMP-FLP:

Amplified fragment length polymorphism

References

  1. Allen CR, Graves G, Budowle B (1989) Polymerase chain reaction amplification products separated on rehydratable polyacrylamide gels and stained with silver. Bio Techniques 7:736–744

    Google Scholar 

  2. Boerwinkle E, Xiong W, Fourest E, Chan L (1989) Rapid typing of tandemly repeated hypervariable loci by polymerase chain reaction: application to the apolipoprotein B 3′ hypervariable region. Proc Natl Acad Sci USA 86:212–216

    Google Scholar 

  3. Brinkmann B, Jobst U (1973) Bestimmung des Kerngeschlechts an biologischen Spuren. Z Rechtsmed 73:1–6

    Google Scholar 

  4. Budowle B, Chakraborty R, Giusti AL, Eisenberg AJ, Allen RC (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high resolution PAGE. Am J Hum Genet 48:137–144

    Google Scholar 

  5. Bugawan TL, Saiki RK, Levenson LH, Watson RM, Erlich HA (1988) The use of nonradioactive oligonucleotide probes to analyze enzymatically amplified DNA for prenatal diagnosis and forensic DNA typing. Biotechnology 6:943–947

    Google Scholar 

  6. Burns J, Chan VTW, Jonasson JA, Fleming KA, Taylor S, McGee JOD (1985) Sensitive system for visualising biotinylated DNA probes hybridised in situ: rapid sex determination of intact cells. J Clin Pathol 38:1085–1092

    Google Scholar 

  7. Comey CT, Jung JMJ, Budowle B (1991) Use of formamide to improve amplification of HLADQα sequences. Bio Techniques 10:60–61

    Google Scholar 

  8. Cooke HJ, Schmidtke J, Gosden JR (1982) Characterisation of a human Y chromosome repeated sequence and related sequences in higher primates. Chromosoma 87:491–502

    Google Scholar 

  9. Cramer H, Hansen S (1972) On the Y-fluorescence in human male fibroblasts. Hum Genet 17:23–28

    Google Scholar 

  10. Dange AH, Malvankar AG, Madiwale MS (1978) Geschlechtsbestimmung durch Zahnanalyse. Arch Kriminol 162:115–119

    Google Scholar 

  11. Duffy JB, Waterfield JD, Skinner MF (1991) Isolation of tooth pulp cells for sex chromatin studies in experimental dehydrated and cremated remains. Forensic Sci Int 49:127–141

    Google Scholar 

  12. Higuchi R (1991) PCR and forensic DNA typing. Proceedings from the Second International Symposium on Human Identification. Promega Corporation, Madison (WI), USA, pp 73–90

    Google Scholar 

  13. Hunt EE, Gleiser J (1955) The estimation of age and sex of preadolescent children from bones and teeth. Am J Phys Anthropol 13:389–487

    Google Scholar 

  14. Kafatos FC, Jones CW, Efstratiadis A (1979) Determination of nucleic acid sequence homologies and relative concentrations by a dot- blot method. Nucleic Acids Res 7:1541–1552

    Google Scholar 

  15. Labara C, Paigen K (1980) A simple rapid and sensitive DNA assay procedure. Anal Biochem 102:344–352

    Google Scholar 

  16. Maniatis T, Frisch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  17. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. In: Grossman L, Moldave K (eds) Methods in enzymology. Academic Press, London, 155:335–350

    Google Scholar 

  18. Nakamura Y, Leppert M, O'Connel P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R (1988) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622

    Google Scholar 

  19. Pflug W (1988) Subtyping of group specific component (GC) in microbloodstains and semen stains by isoclectric focusing in ultrathin immobilized pH gradient gels followed by enzyme detection. Electrophoresis 9:443–448

    Google Scholar 

  20. Pötsch L, Penzes L, Rittner Ch (1992) GC-Subtypisierung an der menschlichen Zahnpulpa durch isoelektrische Fokussierung in immobilisierten pH-Gradienten. Rechtsmedizin 2:67–70

    Google Scholar 

  21. Pötsch-Schneider L, Penzes L (1988) Bloodtyping in human dental pulp by immunoenzyme techniques. In: Mayr W (ed) Advances in forensic haemogenetics 2. Springer, Heidelberg Berlin New York, pp 517–519

    Google Scholar 

  22. Rittner Ch, Schneider PM (eds.) (1992) Advances in forensic haemogenetics 4. Springer, Heidelberg Berlin New York

    Google Scholar 

  23. Sammons DW, Adams LD, Nishizawa EE (1981) Ultrasensitive silver-based color staining of polypeptides in polyacrylamide gels. Electrophoresis 2:135–144

    Google Scholar 

  24. Schacker U, Schneider PM, Holtkamp B, Bohnke E, Fimmers R, Sonneborn HH, Rittner C (1990) Isolation of the minisatellite probe MZ 1.3 and its application to DNA fingerprinting analysis. Forensic Sci Int 44:209–224

    Google Scholar 

  25. Schmid M, Guttenbach M, Nanda I, Studer R, Epplen JT (1990) Organization of DYZ2 repetitive DNA on the human y chromosome. Genomics 6:212–218

    Google Scholar 

  26. Schwartz TR, Schwartz EA, Mieszerski L, McNally L, Kobilinsky L (1991) Characterization of deoxyribonucleic acid (DNA) obtained from teeth subjected to various environmental conditions. J Forensic Sci 36:979–990

    Google Scholar 

  27. Schwinger E, Rackebrand E, Müller HJ, Bühler M, Tettenborn U (1971) Y-body in hair roots. Humangenetik 12:79–80

    Google Scholar 

  28. Seno M (1977) Sex identification of the human tooth by Ychromatin in the nucleus of dental pulp cells. Jpn J Leg Med 31:172–179

    Google Scholar 

  29. Thomsen JL (1977) Sex determination of severely burned bodies. Forensic Sci Int 10:235–242

    Google Scholar 

  30. Tomita M, Ijiri I, Shimosato K, Mikami Y (1984) The effect of heating on Y-chromosome detection. Forensic Sci Int 24:43–49

    Google Scholar 

  31. Waye JS, Presley LA, Budowle B, Shuttler GG, Fourney RM (1991) A simple and sensitive method for quantifying human genomic DNA in forensic specimen extracts. Bio Techniques 7:852–855

    Google Scholar 

  32. Whittaker DK, Llewelyn DR, Jones RW (1975) Sex determination from necrotic pulp tissue. Br Dent J 139:403–405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pötsch, L., Meyer, U., Rothschild, S. et al. Application of DNA techniques for identification using human dental pulp as a source of DNA. Int J Leg Med 105, 139–143 (1992). https://doi.org/10.1007/BF01625165

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01625165

Key words

Schlüsselwörter

Navigation