Skip to main content

Lithium Cobalt Oxide (LiCoO2): A Potential Cathode Material for Advanced Lithium-Ion Batteries

  • Chapter
  • First Online:
Electrospinning for Advanced Energy Storage Applications

Abstract

There are lots of scientific innovations taking place in lithium-ion battery technology and the introduction of lithium metal oxide as cathode material is one of them. Among them, LiCoO2 is considered as a potential candidate for advanced applications due to its higher electrochemical performance. But it suffers some problems related to storage efficiency, safety, and cost. To improve the properties of LiCoO2, there is a lot of research carried out in this field and mainly focuses on its structural modification. Implementing new synthetic approaches, such as electrospinning is found to be more attractive in recent years for developing nanomaterial with improved physical and chemical properties. Electrospinning is a low-cost and simple procedure for the fabrication of 1D nanostructure. Electrospun LiCoO2 nanostructures exhibit high specific surface area, short ionic and electronic diffusion pathways, and mechanical stability, which can enhance the specific capacity and thus the battery performance and safety. This chapter reviews different morphologies of electrospun LiCoO2 nanostructures, structural modification by coating, and different electrospun LiCoO2 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armand MJ-MT (2001) Issues and challenges facing rechargeable lithium batteries. Nat Commun 414:359–367

    Google Scholar 

  2. Whittingham MS (1976) Electrical energy storage and intercalation chemistry 192

    Google Scholar 

  3. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into magnesium spinels. Mater Res Bull 18:461–472. https://doi.org/10.1016/0025-5408(83)90138-1

    Article  Google Scholar 

  4. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1981) LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Solid State Ionics 4:171–174

    Article  Google Scholar 

  5. Orman HJ, Wiseman PJ (1984) Cobalt (III) lithium oxide, CoLiO2 : structure refinement by powder 12–14

    Google Scholar 

  6. Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791. https://doi.org/10.1021/cm000511k

    Article  Google Scholar 

  7. Cho J, Kim YJ, Kim TJ, Park B (2001) Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew Chemie Int Ed 40:3367–3369. https://doi.org/10.1002/1521-3773(20010917)40:18%3c3367:AID-ANIE3367%3e3.0.CO;2-A

    Article  Google Scholar 

  8. Sigmund W, Yuh J, Park H et al (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89:395–407. https://doi.org/10.1111/j.1551-2916.2005.00807.x

    Article  Google Scholar 

  9. Wang J, Feng CQ, Sun ZQ et al (2014) In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries. Sci Rep 4:7030. https://doi.org/10.1038/srep07030

    Article  Google Scholar 

  10. Zhang R, Wen Q, Qian W et al (2011) Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv Mater 23:3387–3391. https://doi.org/10.1002/adma.201100344

    Article  Google Scholar 

  11. Dong Z, Kennedy SJ, Wu Y (2011) Electrospinning materials for energy-related applications and devices. J Power Sour 196:4886–4904. https://doi.org/10.1016/j.jpowsour.2011.01.090

    Article  Google Scholar 

  12. Gu Y, Chen D, Jiao X (2005) Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. J Phys Chem B 109:17901–17906. https://doi.org/10.1021/jp0521813

    Article  Google Scholar 

  13. Mizuno Y, Hosono E, Saito T, et al (2012) Electrospinning synthesis of wire-structured LiCoO2 for electrode materials of high-power Li-ion batteries. https://doi.org/10.1021/jp2123482

  14. Sun YK, Oh IH, Hong SA (1996) Synthesis of ultrafine LiCoO2 powders by the sol-gel method. J Mater Sci 31:3617–3621. https://doi.org/10.1007/BF00352769

    Article  Google Scholar 

  15. Reimers JN, Dahn JR (1992) Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139:2091–2097. https://doi.org/10.1149/1.2221184

    Article  Google Scholar 

  16. Dersch R, Steinhart M, Boudriot U et al (2005) Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym Adv Technol 16:276–282. https://doi.org/10.1002/pat.568

    Article  Google Scholar 

  17. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170. https://doi.org/10.1002/adma.200400719

    Article  Google Scholar 

  18. Zhan S, Li Y, Yu H (2008) LiCoO2 hollow nanofibers by co-electrospinning sol-gel precursor. J Dispers Sci Technol 29:702–705. https://doi.org/10.1080/01932690701758517

    Article  Google Scholar 

  19. Honma I, Okubo M, Kim J et al (2009) Anisotropic surface effect on electronic structures and electrochemical properties of LiCoO2. J Phys Chem C 113:15337–15342. https://doi.org/10.1021/jp904877d

    Article  Google Scholar 

  20. Shaju J, Bruce P (2005) Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post templating reaction. Angew Chem 15:6553

    Google Scholar 

  21. Peng ZS (1998) Synthesis by sol-gel process and characterization of LiCoO2 cathode materials 215–220

    Google Scholar 

  22. Vertruyen B, Eshraghi N, Piffet C, et al (2018) Spray-drying of electrode materials for lithium-ion and sodium-ion batteries. Materials (Basel) 11. https://doi.org/10.3390/ma11071076

  23. Chen H, Qiu X, Zhu W, Hagenmuller P (2002) Synthesis and high rate properties of nanoparticled lithium cobalt oxides as the cathode material for lithium-ion battery. Electrochem Commun 4:488–491. https://doi.org/10.1016/S1388-2481(02)00357-0

    Article  Google Scholar 

  24. Hosono E, Kudo T, Honma I et al (2009) Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett 9:1045–1051. https://doi.org/10.1021/nl803394v

    Article  Google Scholar 

  25. Dai X, Wang L, Xu J et al (2014) Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering. ACS Appl Mater Interfaces 6:15853–15859. https://doi.org/10.1021/am503260s

    Article  Google Scholar 

  26. Burukhin A, Brylev O, Hany P, Churagulov BR (2002) Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries 151:259–263

    Google Scholar 

  27. Cohen J, Perl JM (1988) Atmospheric noise implementation in an HF-channel simulator 355

    Google Scholar 

  28. Li D, Wang Y, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171. https://doi.org/10.1021/nl0344256

    Article  Google Scholar 

  29. Cavaliere S, Subianto S, Savych I et al (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energ Environ Sci 4:4761–4785. https://doi.org/10.1039/c1ee02201f

    Article  Google Scholar 

  30. Zhang W, Hu Y, Tao X et al (2010) Synthesis of spherical LiFePO4/C via Ni doping. J Phys Chem Solids 71:1196–1200. https://doi.org/10.1016/j.jpcs.2010.04.015

    Article  Google Scholar 

  31. Kawamura T, Makidera M, Okada S et al (2005) Effect of nano-size LiCoO2 cathode powders on Li-ion cells. J Power Sour 146:27–32. https://doi.org/10.1016/j.jpowsour.2005.03.012

    Article  Google Scholar 

  32. Ding N, Ge XW, Chen CH (2005) A new gel route to synthesize LiCoO2 for lithium-ion batteries. Mater Res Bull 40:1451–1459. https://doi.org/10.1016/j.materresbull.2005.04.022

    Article  Google Scholar 

  33. Ou Y, Wen J, Xu H et al (2013) Ultrafine LiCoO2 powders derived from electrospun nanofibers for Li-ion batteries. J Phys Chem Solids 74:322–327. https://doi.org/10.1016/j.jpcs.2012.10.007

    Article  Google Scholar 

  34. Bai Y, Shi H, Wang Z, Chen L (2007) Performance improvement of LiCoO2 by molten salt surface modification. J Power Sour 167:504–509. https://doi.org/10.1016/j.jpowsour.2007.02.036

    Article  Google Scholar 

  35. Kim YJ, Kim TJ, Shin JW et al (2002) The effect of Al2O3 coating on the cycle life performance in thin-film LiCoO2 cathodes. J Electrochem Soc 149:1337–1341. https://doi.org/10.1149/1.1505634

    Article  Google Scholar 

  36. Yu Y, Shui JL, Jin Y, Chen CH (2006) Electrochemical performance of nano-SiO2 modified LiCoO2 thin films fabricated by electrostatic spray deposition (ESD). Electrochim Acta 51:3292–3296. https://doi.org/10.1016/j.electacta.2005.09.021

    Article  Google Scholar 

  37. Lu HW, Yu L, Zeng W et al (2008) Fabrication and electrochemical properties of three-dimensional structure of LiCoO2 fibers. Electrochem Solid State Lett 11:140–144. https://doi.org/10.1149/1.2932054

    Article  Google Scholar 

  38. Chen L-J, Liao J-D, Chuang Y-J, Hsu K-C, Chiang Y-F, Fu Y-S (2010) Synthesis and characterisation of PVP/LiCoO2 nanofibers by electrospinning route. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  Google Scholar 

  39. Zhang J, Liu J, Wang S et al (2004) Facile methods to coat polystyrene and silica colloids with metal. Adv Funct Mater 14:1089–1096. https://doi.org/10.1002/adfm.200400119

    Article  Google Scholar 

  40. Gu Y, Chen D, Jiao X, Liu F (2007) LiCoO2–MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties. J Mater Chem 1769–1776. https://doi.org/10.1039/b614205b

  41. Nakai I, Takahashi K, Shiraishi Y et al (1998) Study of the Jahn-Teller distortion in LiNiO2, a cathode material in a rechargeable lithium battery, by in situ X-ray absorption fine structure analysis. J Solid State Chem 140:145–148. https://doi.org/10.1006/jssc.1998.7943

    Article  Google Scholar 

  42. Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energ Environ Sci 5:6652–6667. https://doi.org/10.1039/c2ee03410g

    Article  Google Scholar 

  43. Tao H, Feng Z, Liu H et al (2011) Reality and future of rechargeable lithium batteries. Open Mater Sci J 5:204–214. https://doi.org/10.2174/1874088X01105010204

    Article  Google Scholar 

  44. Alcantara R, Lavela P, Tirado JL (1998) Structure and electrochemical properties of boron-doped LiCoO2. J Solid State Chem 23:781–786

    Google Scholar 

  45. Waki S, Dokko K, Itoh T et al (2000) High-speed voltammetry of Mn-doped LiCoO2 using a microelectrode technique. J Solid State Electrochem 4:205–209. https://doi.org/10.1007/s100080050196

    Article  Google Scholar 

  46. Stoyanova R, Zhecheva E, Zarkova L (1994) Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1-yO2 solid solutions. Solid State Ionics 73:233–240. https://doi.org/10.1016/0167-2738(94)90039-6

    Article  Google Scholar 

  47. Mladenov M, Stoyanova R, Zheheva E, Vassilev S (2001) Effect of Mg doping and MgO-surface modification on the cycling. Electrochem Commun 3:410–416

    Article  Google Scholar 

  48. Madhavi S, Subba Rao GV, Chowdari BVR, Li SFY (2002) Effect of Cr dopant on the cathodic behavior of LiCoO2. Electrochim Acta 48:219–226. https://doi.org/10.1016/S0013-4686(02)00594-7

    Article  Google Scholar 

  49. Aykut Y, Pourdeyhimi B, Khan SA (2013) Synthesis and characterization of silver/lithium cobalt oxide (Ag/LiCoO2) nanofibers via sol-gel electrospinning. J Phys Chem Solids 74:1538–1545. https://doi.org/10.1016/j.jpcs.2013.05.021

  50. Kim Y, Park JH, Kim JG et al (2017) Ruthenium oxide incorporated one-dimensional cobalt oxide composite nanowires as lithium-oxygen battery cathode catalysts. ChemCatChem 9:3554–3562. https://doi.org/10.1002/cctc.201700560

    Article  Google Scholar 

  51. Zhang J, Li P, Wang Z et al (2015) Three-dimensional graphene-Co3O4 cathodes for rechargeable Li-O2 batteries. J Mater Chem A 3:1504–1510. https://doi.org/10.1039/c4ta05573j

    Article  Google Scholar 

  52. Wang F, Wen Z, Shen C et al (2015) Open mesoporous spherical shell structured Co3O4 with highly efficient catalytic performance in Li-O2 batteries. J Mater Chem A 3:7600–7606. https://doi.org/10.1039/c5ta00295h

    Article  Google Scholar 

  53. Zeng J, Francia C, Amici J et al (2014) Mesoporous Co3O4 nanocrystals as an effective electro-catalyst for highly reversible Li-O2 batteries. J Power Sour 272:1003–1009. https://doi.org/10.1016/j.jpowsour.2014.09.055

    Article  Google Scholar 

  54. Hou Y, Li J, Wen Z et al (2015) Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energ 12:1–8. https://doi.org/10.1016/j.nanoen.2014.11.043

    Article  Google Scholar 

  55. Débart A, Bao J, Armstrong G, Bruce PG (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sour 174:1177–1182. https://doi.org/10.1016/j.jpowsour.2007.06.180

    Article  Google Scholar 

  56. Zhang X, Shi F, Yu X et al (2004) Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J Am Chem Soc 126:3064–3065. https://doi.org/10.1021/ja0398722

    Article  Google Scholar 

  57. Wittmaier D, Danner T, Wagner N, Friedrich KA (2014) Screening and further investigations on promising bi-functional catalysts for metal-air batteries with an aqueous alkaline electrolyte. J Appl Electrochem 44:73–85. https://doi.org/10.1007/s10800-013-0602-x

    Article  Google Scholar 

  58. Lee J, Jeong B, Ocon JD (2013) Oxygen electrocatalysis in chemical energy conversion and storage technologies. Curr Appl Phys 13:309–321. https://doi.org/10.1016/j.cap.2012.08.008

    Article  Google Scholar 

  59. Xiao J, Mei D, Li X et al (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071–5078

    Article  Google Scholar 

  60. Xu JJ, Wang ZL, Xu D et al (2013) Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium–oxygen batteries. Nat Commun 4:1–10. https://doi.org/10.1038/ncomms3438

    Article  Google Scholar 

  61. Lim HD, Park KY, Song H et al (2013) Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. Adv Mater 25:1348–1352. https://doi.org/10.1002/adma.201204018

    Article  Google Scholar 

  62. Sun B, Chen S, Liu H, Wang G (2015) Mesoporous carbon nanocube architecture for high-performance lithium–oxygen batteries. Adv Funct Mater 25:4436–4444. https://doi.org/10.1002/adfm.201500863

    Article  Google Scholar 

  63. Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energ Environ Sci 4:2952–2958. https://doi.org/10.1039/c1ee01496j

    Article  Google Scholar 

  64. Shang C, Dong S, Hu P et al (2015) Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Sci Rep 5:1–7. https://doi.org/10.1038/srep08335

    Article  Google Scholar 

  65. Wang X, Wang L, Zhao F, Fu C-G (2015) Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in oxygen reduction reaction 1–48. https://doi.org/10.1039/b000000x

  66. Zhang P, Wang R, He M et al (2016) 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv Funct Mater 26:1354–1364. https://doi.org/10.1002/adfm.201503907

    Article  Google Scholar 

  67. Hyun S, Shanmugam S (2017) Mesoporous Co-CoO/N-CNR nanostructures as high-performance air cathode for lithium-oxygen batteries. J Power Sour 354:48–56. https://doi.org/10.1016/j.jpowsour.2017.04.029

    Article  Google Scholar 

  68. Wang X, Tang Y (2017) Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries. Chem Eng J. https://doi.org/10.1016/j.cej.2017.11.155

  69. Abouali S, Garakani MA, Zhang B et al (2014) Co3O4/porous electrospun carbon nanofiber as anodes for high performance Li-ion batteries. J Mater Chem A Mater Energ Sustain 2:16939–16944. https://doi.org/10.1039/C4TA03206C

    Article  Google Scholar 

  70. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991. https://doi.org/10.1016/j.progpolymsci.2013.02.001

    Article  Google Scholar 

  71. Thavasi V, Singh G, Ramakrishna S (2011) Electrospun nanofibers for energy and environmental applications. In: ICAFPM 2011—proceedings of 2011 international conference on advanced fibers and polymer materials, pp 413–420. https://doi.org/10.1039/b809074m

  72. Yuan C, Wang H, Liu J et al (2017) Journal of colloid and interface science facile synthesis of Co3O4–CeO2 composite oxide nanotubes and their multifunctional applications for lithium ion batteries and CO oxidation. J Colloid Interface Sci 494:274–281. https://doi.org/10.1016/j.jcis.2017.01.074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. Jabeen Fatima or Raghavan Prasanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, A.P. et al. (2021). Lithium Cobalt Oxide (LiCoO2): A Potential Cathode Material for Advanced Lithium-Ion Batteries. In: Balakrishnan, N.T.M., Prasanth, R. (eds) Electrospinning for Advanced Energy Storage Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-8844-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8844-0_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8843-3

  • Online ISBN: 978-981-15-8844-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics