Skip to main content

Li2MnSiO4 Nanostructured Cathodes for Rechargeable Lithium-Ion Batteries

  • Chapter
  • First Online:
Nanomaterials in Advanced Batteries and Supercapacitors

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Rechargeable lithium-ion batteries are increasingly finding applications in new consumer products ranging from portable electronic devices to electric vehicles. These new applications place stringent demands on the performance of the batteries and require novel electrode combinations to meet these requirements. The use of new electrode materials becomes feasible when they are synthesized in nanostructured form, with complex structures and morphologies. In this review article, the case of the lithium-ion battery cathode lithium manganese orthosilicate (Li2MnSiO4) will be examined with particular emphasis on the methods of synthesis, the nanostructured morphologies generated, and the resulting changes in electrochemical performance compared to that of the material in its bulk form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagaura T, Tozawa K (1990) Prog Batter Solar Cells 9:209

    Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  Google Scholar 

  3. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863

    Article  Google Scholar 

  4. Xu T, Wang W, Gordin ML et al (2010) Lithium-ion batteries for stationary energy storage. JOM-US 62:24–30

    Article  Google Scholar 

  5. Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  6. Song T, Xia J, Lee J-H et al (2010) Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 10:1710–1716

    Article  Google Scholar 

  7. Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18:645–649

    Article  Google Scholar 

  8. Armand M (2002) World Patent WO02/27823

    Google Scholar 

  9. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  10. Nazar LF, Goward G, Leroux F et al (2001) Nanostructured materials for energy storage. Int J Inorg Mater 3:191–200

    Article  Google Scholar 

  11. Ravet N, Chouinard Y, Magnan JF et al (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507

    Article  Google Scholar 

  12. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714

    Article  Google Scholar 

  13. Gong Z, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223–3242

    Article  Google Scholar 

  14. Islam MS, Dominko R, Masquelier C et al (2011) Silicate cathodes for lithium batteries: alternatives to phosphates? J Mater Chem 21:9811–9818

    Article  Google Scholar 

  15. Dominko R, Bele M, Gaberscek M et al (2006) Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun 8:217–222

    Article  Google Scholar 

  16. Dominko R, Bele M, Kokalj A et al (2007) Li2MnSiO4 as a potential Li-battery cathode material. J Power Sources 174:457–461

    Article  Google Scholar 

  17. Lv D, Bai J, Zhang P et al (2013) Understanding the high capacity of Li2FeSiO4: in situ XRD/XANES study combined with first principles calculations. Chem Mater 25:2014–2020

    Article  Google Scholar 

  18. Dominko R, Sirisopanaporn C, Masquelier C et al (2010) On the origin of the electrochemical capacity of Li 2Fe0.8Mn0.2SiO4. J Electrochem Soc 157:A1309

    Article  Google Scholar 

  19. Bruce PG, Lyness C, Delobel B et al (2007) The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries. Chem Commun 46:4890–4892

    Google Scholar 

  20. Gong ZL, Li YX, Yang Y (2007) Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries. J Power Sources 174:524–527

    Article  Google Scholar 

  21. Gummow RJ, Sharma N, Peterson VK et al (2012) Crystal chemistry of the Pmnb polymorph of Li2MnSiO4. J Solid State Chem 188C:32–37

    Article  Google Scholar 

  22. Politaev VV, Petrenko AA, Nalbandyan VB et al (2007) Crystal structure, phase relations and electrochemical properties of monoclinic Li2MnSiO4. J Solid State Chem 180:1045–1050

    Article  Google Scholar 

  23. Duncan H, Kondamreddy A, Mercier PHJ et al (2011) Novel Pn polymorph for Li2MnSiO4 and its electrochemical activity as a cathode material in Li-ion batteries. Chem Mater 23:5446–5456

    Article  Google Scholar 

  24. Gummow RJ, He Y (2014) Recent progress in the development of Li2MnSiO4 cathode materials. J Power Sources 253:315–331

    Article  Google Scholar 

  25. Arroyo-deDompablo ME, Dominko R, Gallardo-Amores JM et al (2008) On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs. Chem Mater 20:5574–5584

    Article  Google Scholar 

  26. Gummow RJ, Sharma N, Peterson VK et al (2012) Synthesis, structure, and electrochemical performance of magnesium-substituted lithium manganese orthosilicate cathode materials for lithium-ion batteries. J Power Sources 197:231–237

    Article  Google Scholar 

  27. Kuganathan N, Islam MS (2009) Li2MnSiO4 lithium battery material: atomic-scale study of defects, lithium mobility, and trivalent dopants. Chem Mater 21:5196–5202

    Article  Google Scholar 

  28. Fisher CAJ, Kuganathan N, Islam MS (2013) Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4. J Mater Chem A 1:4207–4214

    Article  Google Scholar 

  29. Dominko R (2008) Li2MSiO4 (M = Fe and/or Mn) cathode materials. J Power Sources 184:462–468

    Article  Google Scholar 

  30. Kokalj A, Dominko R, Mali G et al (2007) Beyond one-electron reaction in Li cathode materials: designing Li2MnxFe1-xSiO4. Chem Mater 19:3633–3640

    Article  Google Scholar 

  31. Li YX, Gong ZL, Yang Y (2007) Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources 174:528–532

    Article  Google Scholar 

  32. Wang Y, Li H, He P et al (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305

    Article  Google Scholar 

  33. Deng C, Zhang S, Fu BL et al (2010) Characterization of Li2MnSiO4 and Li2FeSiO4 cathode materials synthesized via a citric acid assisted sol–gel method. Mater Chem Phys 120:14–17

    Article  Google Scholar 

  34. Belharouak I, Abouimrane A, Amine K (2009) Structural and electrochemical characterization of Li2MnSiO4 cathode material. J Phys Chem C 113:20733–20737

    Article  Google Scholar 

  35. Liu WG, Xu YH, Yang R (2010) Synthesis and electrochemical properties of Li2MnSiO4/C nanoparticles via polyol process. Rare Met 29:511–514

    Article  Google Scholar 

  36. Mali G, Meden A, Dominko R (2010) Li-6 MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs. Chem Commun 46:3306–3308

    Article  Google Scholar 

  37. Manthiram A, Muraliganth T, Stroukoff KR (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22:5754–5761

    Article  Google Scholar 

  38. Kojima A, Kojima T, Tabuchi M et al (2012) Synthesis of Li2MnSiO4 cathode material using molten carbonate flux method with high capacity and initial efficiency. J Electrochem Soc 159:A532–A537

    Article  Google Scholar 

  39. Kempaiah DM, Rangappa D, Honma I (2012) Controlled synthesis of nanocrystalline Li2MnSiO4 particles for high capacity cathode application in lithium-ion batteries. Chem Commun 48:2698–2700

    Article  Google Scholar 

  40. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  41. Rui X, Zhao X, Lu Z et al (2013) Olivine-Type nanosheets for lithium ion battery cathodes. ACS Nano 7:5637–5646

    Article  Google Scholar 

  42. Rangappa D, Murukanahally KD, Tomai T et al (2012) Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett 12:1146–1151

    Article  Google Scholar 

  43. Devaraju MK, Tomai T, Unemoto A et al (2013) Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications. RSC Adv 3:608–615

    Article  Google Scholar 

  44. Aravindan V, Karthikeyan K, Kang KS et al (2011) Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes. J Mater Chem 21:2470–2475

    Article  Google Scholar 

  45. Ha SH, Jeong YS, Lee YJ (2013) Free standing reduced graphene oxide film cathodes for lithium ion batteries. ACS Appl Mater Interfaces 5:12295–12303

    Article  Google Scholar 

  46. Zhao Y, Wu C, Li J et al (2013) Long cycling life of Li2MnSiO4 lithium battery cathodes under the double protection from carbon coating and graphene network. J Mater Chem A 1:3856–3859

    Article  Google Scholar 

  47. Hwang TH, Lee YM, Kong B-S et al (2011) Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12:802–807

    Article  Google Scholar 

  48. Zhang S, Lin Z, Ji L et al (2012) Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. J Mater Chem 22:14661–14666

    Article  Google Scholar 

  49. Park H, Song T, Tripathi R et al (2014) Li2MnSiO4/carbon nanofiber cathodes for Li-ion batteries. Ionics 20:1351–1359

    Article  Google Scholar 

  50. Jiao F, Bruce PG (2007) Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries. Adv Mater 19:657–660

    Article  Google Scholar 

  51. Jiang C, Hosono E, Zhou H (2006) Nanomaterials for lithium ion batteries. Nano Today 1:28–33

    Article  Google Scholar 

  52. Bruce PG (2008) Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ion 179:752–760

    Article  Google Scholar 

  53. Jiao F, Bao J, Hill AH et al (2008) Synthesis of ordered mesoporous Li–Mn–O spinel as a positive electrode for rechargeable lithium batteries. Angew Chem Int Ed 47:9711–9716

    Article  Google Scholar 

  54. Yan HW, Sokolov S, Lytle JC et al (2003) Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries. J Electrochem Soc 150:A1102–A1107

    Article  Google Scholar 

  55. Doherty CM, Caruso RA, Smarsly BM et al (2009) Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem Mater 21:2895–2903

    Article  Google Scholar 

  56. Vu A, Stein A (2011) Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem Mater 23:3237–3245

    Article  Google Scholar 

  57. Kawase T, Yoshitake H (2012) Cathodes comprising Li2MnSiO4 nanoparticles dispersed in the mesoporous carbon frameworks, CMK-3 and CMK-8. Microporous Mesoporous Mater 155:99–105

    Article  Google Scholar 

  58. Gummow RJ, He Y (2014) Mesoporous manganese-deficient lithium manganese silicate cathodes for lithium-ion batteries. RSC Adv 4:11580–11584

    Article  Google Scholar 

  59. He G, Manthiram A (2014) Nanostructured Li2MnSiO4/C cathodes with hierarchical macro-/mesoporosity for lithium-ion batteries. Adv Funct Mater 24:5277–5283

    Article  Google Scholar 

  60. Messing GL, Zhang S-C, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76:2707–2726

    Article  Google Scholar 

  61. Moriya M, Miyahara M, Hokazono M et al (2014) Synthesis of hybrid Li2MnSiO4 nanoparticles with carbon for cathode materials with stable charge/discharge cycles. J Electrochem Soc 161:A97–A101

    Article  Google Scholar 

  62. Moriya M, Miyahara M, Hokazono M et al (2014) High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithium ion batteries. J Power Sources 263:7–12

    Article  Google Scholar 

  63. Shao B, Taniguchi I (2014) Synthesis of Li2MnSiO4/C nanocomposites for lithium battery cathode employing sucrose as carbon source. Electrochim Acta 128:156–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind June Gummow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gummow, R.J. (2016). Li2MnSiO4 Nanostructured Cathodes for Rechargeable Lithium-Ion Batteries. In: Ozoemena, K., Chen, S. (eds) Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26082-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26082-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26080-8

  • Online ISBN: 978-3-319-26082-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics