Skip to main content

Optogenetic Approach to Local Neuron Network Analysis of the Medullary Respiratory Center

  • Chapter
  • First Online:
Optogenetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

  • 5012 Accesses

Abstract

Using an optogenetic approach, we analyzed a local neuron network of the respiratory center in the medulla of a brainstem–spinal cord preparation isolated from neonatal rat. We developed a transgenic (Tg) rat line in which Phox2b-positive cells expressed archaerhodopsin-3 (Arch) or one of the step-function channelrhodopsin variants (ChRFR) under the control of Phox2b promoter-enhancer regions. Then, in en bloc preparations from 0- to 2-day-old Tg neonatal rats, we analyzed membrane potential changes of medullary respiratory-related neurons in response to photostimulation of the rostral ventral medulla. The photostimulation-induced inhibition or facilitation of the respiratory rhythm in Arch-expressing or ChRFR-expressing Tg rat preparations, respectively. Selective photoactivation of Phox2b-positive neurons expressing ChRFR in the rostral ventrolateral medulla of a neonatal rat en bloc preparation induced membrane potential changes of respiratory-related neurons that were dependent on heterogeneous properties of synaptic connections in the respiratory center. We concluded that the optogenetic approach is a powerful method of verifying a hypothetical model of local networks among respiratory-related neurons in the rostral ventrolateral medulla of neonatal rat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AICA:

Anterior inferior cerebellar artery

Arch:

Archaerhodopsin-3

C4:

Fourth cervical ventral root

ChRFR:

Step-function channelrhodopsin variants

Exp:

Expiratory

EYFP:

Enhanced yellow fluorescent protein

FN:

Facial nucleus

Insp:

Inspiratory

LED:

Light-emitting diode

pFRG:

Parafacial respiratory group

preBötC:

preBötzinger complex

Pre-I:

Preinspiratory

RTN:

Retrotrapezoid nucleus

Tg:

Transgenic

TH:

Tyrosine hydroxylase

TTX:

Tetrodotoxin

References

  • Abbott SB, Stornetta RL, Fortuna MG et al (2009) Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 29:5806–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballanyi K, Onimaru H, Homma I (1999) Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol 59:583–634

    Article  CAS  PubMed  Google Scholar 

  • Ballanyi K, Ruangkittisakul A, Onimaru H (2009) Opioids prolong and anoxia shortens delay between onset of preinspiratory (pFRG) and inspiratory (preBotC) network bursting in newborn rat brainstems. Pflugers Arch 458:571–587

    Article  CAS  PubMed  Google Scholar 

  • Basting TM, Burke PG, Kanbar R et al (2015) Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis. J Neurosci 35:527–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burke PG, Abbott SB, Coates MB et al (2014) Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats. Am J Respir Crit Care Med 190:1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubreuil V, Ramanantsoa N, Trochet D et al (2008) A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci U S A 105:1067–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellenberger HH, Feldman JL (1990) Brainstem connections of the rostral ventral respiratory group of the rat. Brain Res 513:35–42

    Article  CAS  PubMed  Google Scholar 

  • Guyenet PG, Mulkey DK, Stornetta RL et al (2005) Regulation of ventral surface chemoreceptors by the central respiratory pattern generator. J Neurosci 25:8938–8947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyenet PG, Bayliss DA, Stornetta RL et al (2009) Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir Physiol Neurobiol 168:59–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Igarashi H, Ikeda K, Onimaru H et al (2018) Targeted expression of step-function opsins in transgenic rats for optogenetic studies. Sci Rep 8:5435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda K, Takahashi M, Sato S et al (2015) A Phox2b BAC transgenic rat line useful for understanding respiratory rhythm generator neural circuitry. PLoS One 10:e0132475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda K, Kawakami K, Onimaru H et al (2017) The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology. J Physiol Sci 67:45–62

    Article  PubMed  Google Scholar 

  • Ikeda K, Igarashi H, Yawo H et al (2019a) Optogenetic analysis of respiratory neuronal networks in the ventral medulla of neonatal rats producing channelrhodopsin in Phox2b-positive cells. Pflugers Arch 471:1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Kaneko R, Yanagawa Y et al (2019b) Analysis of the neuronal network of the medullary respiratory center in transgenic rats expressing archaerhodopsin-3 in Phox2b-expressing cells. Brain Res Bull 144:39–45

    Article  CAS  PubMed  Google Scholar 

  • Kanbar R, Stornetta RL, Cash DR et al (2010) Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats. Am J Respir Crit Care Med 182:1184–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BJ, Chang DA, Mackay DD et al (2007) Central nervous system distribution of the transcription factor Phox2b in the adult rat. J Comp Neurol 503:627–641

    Article  CAS  PubMed  Google Scholar 

  • Kotani S, Yazawa I, Onimaru H et al (2019) An aromatic substance, eugenol induces distinct depressant effects on respiratory activity in different postnatal developmental stages of the rat. Neurosci Res S0168-0102(19):30170–30171

    Google Scholar 

  • Lawlor PA, Bland RJ, Mouravlev A et al (2009) Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol Ther 17:1692–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Durand R, Gradinaru V et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malheiros-Lima MR, Totola LT, Lana MVG et al (2018) Breathing responses produced by optogenetic stimulation of adrenergic C1 neurons are dependent on the connection with preBotzinger complex in rats. Pflugers Arch 470:1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Mellen NM, Janczewski WA, Bocchiaro CM et al (2003) Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37:821–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathanson JL, Jappelli R, Scheeff ED et al (2009) Short promoters in viral vectors drive selective expression in mammalian inhibitory neurons, but do not restrict activity to specific inhibitory cell-types. Front Neural Circuits 3:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onimaru H, Homma I (1987) Respiratory rhythm generator neurons in medulla of brainstem-spinal cord preparation from newborn rat. Brain Res 403:380–384

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Homma I (1992) Whole cell recordings from respiratory neurons in the medulla of brainstem-spinal cord preparations isolated from newborn rats. Pflugers Arch 420:399–406

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23:1478–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onimaru H, Arata A, Homma I (1988) Primary respiratory rhythm generator in the medulla of brainstem-spinal cord preparation from newborn rat. Brain Res 445:314–324

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Arata A, Homma I (1997) Neuronal mechanisms of respiratory rhythm generation: an approach using in vitro preparation. Jpn J Physiol 47:385–403

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Ikeda K, Kawakami K (2008) CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat. J Neurosci 28:12845–12850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onimaru H, Ikeda K, Kawakami K (2012a) Postsynaptic mechanisms of CO(2) responses in parafacial respiratory neurons of newborn rats. J Physiol 590:1615–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onimaru H, Ikeda K, Kawakami K (2012b) Relationship between the distribution of the paired-like homeobox gene (Phox2b) expressing cells and blood vessels in the parafacial region of the ventral medulla of neonatal rats. Neuroscience 212:131–139

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Ikeda K, Mariho T et al (2014) Cytoarchitecture and CO(2) sensitivity of Phox2b-positive parafacial neurons in the newborn rat medulla. Prog Brain Res 209:57–71

    Article  PubMed  Google Scholar 

  • Onimaru H, Tsuzawa K, Nakazono Y et al (2015) Midline section of the medulla abolishes inspiratory activity and desynchronizes pre-inspiratory neuron rhythm on both sides of the medulla in newborn rats. J Neurophysiol 113:2871–2878

    Article  PubMed  PubMed Central  Google Scholar 

  • Onimaru H, Nakamura S, Ikeda K et al (2018) Confocal calcium imaging analysis of respiratory-related burst activity in the parafacial region. Brain Res Bull 139:16–20

    Article  CAS  PubMed  Google Scholar 

  • Pagliardini S, Janczewski WA, Tan W et al (2011) Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J Neurosci 31:2895–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paton JF (1996) The ventral medullary respiratory network of the mature mouse studied in a working heart-brainstem preparation. J Physiol 493(Pt 3):819–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattyn A, Morin X, Cremer H et al (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124:4065–4075

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Morin X, Cremer H et al (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Morrison DE, Ellenberger HH et al (1989) Brainstem projections to the major respiratory neuron populations in the medulla of the cat. J Comp Neurol 281:69–96

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K et al (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stornetta RL, Moreira TS, Takakura AC et al (2006) Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci 26:10305–10314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzue T (1984) Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J Physiol 354:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenker IC, Abe C, Viar KE et al (2017) Blood pressure regulation by the rostral ventrolateral medulla in conscious rats: effects of hypoxia, hypercapnia, baroreceptor denervation, and anesthesia. J Neurosci 37:4565–4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Scientific Research on Innovative Areas (Comprehensive Brain Science Network) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and JSPS KAKENHI (16K07003, 25430012), and by the Program for the Strategic Research Foundation at Private Universities 2016–2017 (Showa University School of Medicine and Jichi Medical University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Onimaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onimaru, H., Ikeda, K. (2021). Optogenetic Approach to Local Neuron Network Analysis of the Medullary Respiratory Center. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_29

Download citation

Publish with us

Policies and ethics