Skip to main content
Log in

Opioids prolong and anoxia shortens delay between onset of preinspiratory (pFRG) and inspiratory (preBötC) network bursting in newborn rat brainstems

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Differential responses to opioids established the hypothesis that pre/postinspiratory (Pre-I) neurons of the parafacial respiratory group (pFRG) and inspiratory (Insp) neurons of the pre-Bötzinger complex (preBötC) constitute a dual brainstem respiratory center. For further analysis of pFRG/preBötC interactions, we studied in newborn rat brainstem-spinal cord preparations opioid and anoxia effects on histologically identified pFRG-driven “type-I” Insp preBötC neurons and Pre-I neurons from three distinct respiratory brainstem regions. The µ-opioid [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) slowed inspiratory-related cervical nerve bursts quantally, whereas anoxia induced nonquantal slowing and repetitive cervical bursts. DAMGO had no effect on membrane potential or input resistance of Pre-I neurons, while anoxia hyperpolarized them (~5 mV) and decreased their resistance (~30%). DAMGO prolonged the preinspiratory phase of Pre-I neuron bursting, whereas anoxia caused a shift to postinspiratory (48%) or inspiratory (22%) activity and silenced further 30% of cells. Pre-I neuron responses were not correlated with their rostrocaudal location or morphology. Neither DAMGO nor anoxia changed membrane potential of type-I neurons, but decreased their input resistance by 33% and 21%, respectively. The opposite DAMGO- and anoxia-evoked phase shifts of Pre-I neuron activity were reflected by corresponding shifts of pre/postinspiratory drive potentials in type-I neurons and, partly, by voltage-sensitive dye-imaged medullary neuronal population activities. The findings suggest that opioids presynaptically delay activation of type-I neurons as the target of drive from the pFRG to the preBötC. Contrary, anoxia seems to partly synchronize the pFRG and preBötC rhythm generators. This may enhance inspiratory and postinspiratory medullary activities for triggering multiple inspiratory motor bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adolph EF (1969) Regulations during survival without oxygen in infant mammals. Respir Physiol 7:356–368

    Article  PubMed  CAS  Google Scholar 

  2. Arata A, Onimaru H, Homma I (1990) Respiration-related neurons in the ventral medulla of newborn rats in vitro. Brain Res Bulletin 24:599–604

    Article  CAS  Google Scholar 

  3. Ballanyi K (2004) Neuromodulation of the perinatal respiratory network. Curr Neuropharmacol 2:221–243

    Article  CAS  Google Scholar 

  4. Ballanyi K (2004) Protective role of neuronal KATP channels in brain hypoxia. J Exp Biol 207:3201–3212

    Article  PubMed  CAS  Google Scholar 

  5. Ballanyi K, Onimaru H, Homma I (1999) Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Progr Neurobiol 59:583–634

    Article  CAS  Google Scholar 

  6. Ballanyi K, Völker A, Richter DW (1994) Anoxia induced functional inactivation of neonatal respiratory neurones in vitro. Neuroreport 6:165–168

    Article  PubMed  CAS  Google Scholar 

  7. Ballanyi K, Lalley PM, Hoch B, Richter DW (1997) cAMP-dependent reversal of opioid- and prostaglandin-mediated depression of the isolated respiratory network in newborn rats. J Physiol (Lond) 504:127–134

    Article  CAS  Google Scholar 

  8. Ballanyi K, Kuwana S, Völker A, Morawietz G, Richter DW (1992) Developmental changes in the hypoxia tolerance of the in vitro respiratory network of rats. Neurosci Lett 148:141–144

    Article  PubMed  CAS  Google Scholar 

  9. Barnes BJ, Tuong CM, Mellen NM (2007) Functional imaging reveals respiratory network activity during hypoxic and opioid challenge in the neonate rat tilted sagittal slab preparation. J Neurophysiol 97:2283–2292

    Article  PubMed  Google Scholar 

  10. Brockhaus J, Ballanyi K (1998) Synaptic inhibition in the isolated respiratory network of neonatal rats. Eur J Neurosci 10:3823–3839

    Article  PubMed  CAS  Google Scholar 

  11. Brockhaus J, Ballanyi K (2000) Anticonvulsant adenosine A1 receptor-mediated adenosine action on neuronal networks in the brainstem-spinal cord of newborn rats. Neuroscience 96:359–371

    Article  PubMed  CAS  Google Scholar 

  12. Brockhaus J, Ballanyi K, Smith JC, Richter DW (1993) Microenvironment of respiratory neurons in the in vitro brainstem-spinal cord of neonatal rats. J Physiol (Lond) 462:421–445

    CAS  Google Scholar 

  13. Chernick V, Craig RJ (1982) Naloxone reverses neonatal depression caused by fetal asphyxia. Science 216:1252–1253

    Article  PubMed  CAS  Google Scholar 

  14. Connelly CA, Ellenberger HH, Feldman JL (1990) Respiratory activity in retrotrapezoid nucleus in cat. Am J Physiol 258:L33–L44

    PubMed  CAS  Google Scholar 

  15. Dutschmann M, Paton JF (2005) Dynamic changes in glottal resistance during exposure to severe hypoxia in neonatal rats in situ. Pediatr Res 58:193–198

    Article  PubMed  Google Scholar 

  16. England SJ, Melton JE, Douse MA, Duffin J (1995) Activity of respiratory neurons during hypoxia in the chemodenervated cat. J Appl Physiol 78:856–861

    PubMed  CAS  Google Scholar 

  17. Fazekas JF, Alexander FAD, Himwich HE (1941) Tolerance of the newborn to anoxia. Am J Physiol 134:281–287

    CAS  Google Scholar 

  18. Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7:232–242

    Article  PubMed  CAS  Google Scholar 

  19. Fortuna MG, West GH, Stornetta RL, Guyenet PG (2008) Botzinger expiratory-augmenting neurons and the parafacial respiratory group. J Neurosci 28:2506–2515

    Article  PubMed  CAS  Google Scholar 

  20. Gray P, Rekling JC, Bocchiaro CM, Feldman JL (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger complex. Science 286:1566–1568

    Article  PubMed  CAS  Google Scholar 

  21. Greer JJ, Carter JE, al-Zubaidy Z (1995) Opioid depression of respiration in neonatal rats. J Physiol (Lond) 485:845–855

    CAS  Google Scholar 

  22. Grunstein MM, Hazinski TA, Schlueter MA (1981) Respiratory control during hypoxia in newborn rabbits: implied action of endorphins. J Appl Physiol 51:122–130

    PubMed  CAS  Google Scholar 

  23. Hayes JA, Del Negro CA (2007) Neurokinin receptor-expressing pre-botzinger complex neurons in neonatal mice studied in vitro. J Neurophysiol 97:4215–4224

    Article  PubMed  CAS  Google Scholar 

  24. Janczewski WA, Feldman JL (2006) Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570:407–420

    PubMed  CAS  Google Scholar 

  25. Janczewski WA, Onimaru H, Homma I, Feldman JL (2002) Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat. J Physiol (Lond) 545:1017–1026

    Article  CAS  Google Scholar 

  26. Kashiwagi M, Onimaru H, Homma I (1993) Correlation analysis of respiratory neuron activity in ventrolateral medulla of brainstem-spinal cord preparation isolated from newborn rat. Exp Brain Res 95:277–290

    Article  PubMed  CAS  Google Scholar 

  27. Lalley PM (2006) Opiate slowing of feline respiratory rhythm and effects on putative medullary phase-regulating neurons. Am J Physiol Regul Integr Comp Physiol 290:R1387–R1396

    PubMed  CAS  Google Scholar 

  28. Lieske SP, Thoby-Brisson M, Telgkamp P, Ramirez JM (2000) Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nat Neurosci 3:600–607

    Article  PubMed  CAS  Google Scholar 

  29. Lorier AR, Lipski J, Housley GD, Greer JJ, Funk GD (2008) ATP sensitivity of preBötzinger complex neurones in neonatal rat in vitro: mechanism underlying a P2 receptor-mediated increase in inspiratory frequency. J Physiol (Lond) 586:1429–1446

    Article  CAS  Google Scholar 

  30. Mellen NM, Janczewski WA, Bocchiaro CM, Feldman JL (2003) Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37:821–826

    Article  PubMed  CAS  Google Scholar 

  31. Moss IR, Brown KA, Laferrière A (2006) Recurrent hypoxia in rats during development increases subsequent respiratory sensitivity to fentanyl. Anesthesiology 105:715–718

    Article  PubMed  Google Scholar 

  32. Oku Y, Masumiya H, Okada Y (2007) Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla. J Physiol (Lond) 585:175–186

    Article  CAS  Google Scholar 

  33. Onimaru H, Homma I (1987) Respiratory rhythm generator neurons in medulla of brainstem-spinal cord preparation from newborn rat. Brain Res 403:380–384

    Article  PubMed  CAS  Google Scholar 

  34. Onimaru H, Homma I (1992) Whole cell recordings from respiratory neurons in the medulla of brainstem-spinal cord preparations isolated from newborn rats. Pflügers Arch 420:399–406

    Article  PubMed  CAS  Google Scholar 

  35. Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23:1478–1486

    PubMed  CAS  Google Scholar 

  36. Onimaru H, Homma I (2008) Two modes of respiratory rhythm generation in the newborn rat brainstem-spinal cord preparation. Adv Exp Med Biol 605:104–108

    Article  PubMed  Google Scholar 

  37. Onimaru H, Arata A, Homma I (1988) Primary respiratory rhythm generator in the medulla of brainstem-spinal cord preparation from newborn rat. Brain Res 44:314–324

    Article  Google Scholar 

  38. Onimaru H, Arata A, Homma I (1990) Inhibitory synaptic inputs to the respiratory rhythm generator in the medulla isolated from newborn rats. Pflügers Arch 417:425–432

    Article  PubMed  CAS  Google Scholar 

  39. Onimaru H, Arata A, Homma I (1997) Neuronal mechanisms of respiratory rhythm generation: an approach using in vitro preparation. Jpn J Physiol 47:385–403

    Article  PubMed  CAS  Google Scholar 

  40. Onimaru H, Ballanyi K, Homma I (2003) Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro. J Physiol (Lond) 552:727–741

    Article  CAS  Google Scholar 

  41. Onimaru H, Kumagawa Y, Homma I (2006) Respiration-related rhythmic activity in the rostral medulla of newborn rats. J Neurophysiol 96:55–61

    Article  PubMed  Google Scholar 

  42. Onimaru H, Ikeda K, Kawakami K (2008) CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat. J Neurosci 28:12845–1850

    Article  PubMed  CAS  Google Scholar 

  43. Paton JF, Abdala AP, Koizumi H, Smith JC, St-John WM (2006) Respiratory rhythm generation during gasping depends on persistent sodium current. Nat Neurosci 9:311–313

    Article  PubMed  CAS  Google Scholar 

  44. Potts JT, Paton JF (2006) Optical imaging of medullary ventral respiratory network during eupnea and gasping in situ. Eur J Neurosci 23:3025–3033

    Article  PubMed  Google Scholar 

  45. Ramirez JM, Quellmalz UJ, Wilken B (1997) Developmental changes in the hypoxic response of the hypoglossus respiratory motor output in vitro. J Neurophysiol 78:383–392

    PubMed  CAS  Google Scholar 

  46. Richter DW, Bischoff A, Anders K, Bellingham M, Windhorst U (1991) Response of the medullary respiratory network of the cat to hypoxia. J Physiol (Lond) 443:231–256

    CAS  Google Scholar 

  47. Ruangkittisakul A, Secchia L, Bornes TD, Palathinkal DM, Ballanyi K (2007) Dependence on extracellular Ca2+/K+ antagonism of inspiratory center rhythms in slices and en bloc preparations of newborn rat brainstem. J Physiol (Lond) 584:489–508

    Article  CAS  Google Scholar 

  48. Ruangkittisakul A, Schwarzacher SW, Ma Y, Poon B, Secchia L, Funk GD, Ballanyi K (2006) High sensitivity to neuromodulator-activated signalling pathways at physiological [K+] of confocally-imaged respiratory center neurons in online-calibrated newborn rat brainstem slices. J Neurosci 26:11870–1188

    Article  PubMed  CAS  Google Scholar 

  49. Ruangkittisakul A, Schwarzacher SW, Ma Y, Poon B, Secchia L, Bobocea N, Funk GD, Ballanyi K (2008) Generation of eupnea and sighs by a spatiochemically organized inspiratory network. J Neurosci 28:2447–2458

    Article  PubMed  CAS  Google Scholar 

  50. Schwarzacher SW, Smith JC, Richter DW (1995) Pre-Bötzinger complex in the cat. J Neurophysiol 73:1452–1461

    PubMed  CAS  Google Scholar 

  51. Schwarzacher SW, Wilhelm Z, Anders K, Richter DW (1991) The medullary respiratory network in the rat. J Physiol (Lond) 435:631–644

    CAS  Google Scholar 

  52. Smith JC, Ballanyi K, Richter DW (1992) Whole-cell patch-clamp recordings from respiratory neurons in neonatal rat brainstem in vitro. Neurosci Lett 134:153–156

    Article  PubMed  CAS  Google Scholar 

  53. Smith JC, Greer JJ, Liu GS, Feldman JL (1990) Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity. J Neurophysiol 64:1149–1169

    PubMed  CAS  Google Scholar 

  54. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  PubMed  CAS  Google Scholar 

  55. Sridhar R, Thach BT, Kelly DH, Henslee JA (2003) Characterization of successful and failed autoresuscitation in human infants, including those dying of SIDS. Pediatr Pulmonol 36:113–122

    Article  PubMed  Google Scholar 

  56. St John WM (1990) Neurogenesis, control, and functional significance of gasping. J Appl Physiol 68:1305–1315

    PubMed  CAS  Google Scholar 

  57. St John WM, Zhou D, Fregosi RF (1989) Expiratory neural activities in gasping. J Appl Physiol 66:223–231

    Article  PubMed  CAS  Google Scholar 

  58. Sun QJ, Goodchild AK, Chalmers JP, Pilowsky PM (1998) The pre-Botzinger complex and phase-spanning neurons in the adult rat. Brain Res 809:204–213

    Article  PubMed  CAS  Google Scholar 

  59. Taccola G, Secchia L, Ballanyi K (2007) Anoxic persistence of lumbar respiratory bursts and block of lumbar locomotion in newborn rat brainstem spinal cords. J Physiol (Lond) 585:507–524

    Article  CAS  Google Scholar 

  60. Takeda S, Eriksson LI, Yamamoto Y, Joensen H, Onimaru H, Lindahl SG (2001) Opioid action on respiratory neuron activity of the isolated respiratory network in newborn rats. Anesthesiology 95:740–749

    Article  PubMed  CAS  Google Scholar 

  61. Tokumasu M, Nakazono Y, Ide H, Akagawa K, Onimaru H (2001) Optical recording of spontaneous respiratory neuron activity in the rat brain stem. Jpn J Physiol 51:613–619

    Article  PubMed  CAS  Google Scholar 

  62. Voituron N, Frugiere A, Champagnat J, Bodineau L (2006) Hypoxia-sensing properties of the newborn rat ventral medullary surface in vitro. J Physiol 577:55–68

    Article  PubMed  CAS  Google Scholar 

  63. Wilson RJ, Vasilakos K, Remmers JE (2006) Phylogeny of vertebrate respiratory rhythm generators: the Oscillator Homology Hypothesis. Respir Physiol Neurobiol 154:47–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture in Japan, the Canadian Institutes of Health Research (CIHR), and the Alberta Heritage Foundation for Medical Research (AHFMR). K.B. is an AHFMR Scientist. A.R. has been awarded a CIHR studentship (MFN training grant) and a AHFMR-Hotchkiss studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ballanyi.

Additional information

K. Ballanyi and A. Ruangkittisakul contributed equally to this work.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Fig. S1

Morphology and location within the preBötC of type-I inspiratory neurons. The schematics in purple show the ventral aspect of the newborn rat brainstem according to the atlas in [48] with numbers indicating the distance from VIIc in mm. Open symbols represent type-I neurons that were tested for DAMGO, whereas the filled symbols show cells tested for chemical anoxia. The label “F.xx” indicates that membrane potential responses of this cell are shown in the corresponding figure in the main paper. Asterisks indicate axons. (DOC 342 kb)

Fig. S2

Morphology and location of Pre-I neurons. The schematics in purple show the ventral aspect of the newborn rat brainstem according to the atlas in [48] with numbers indicating the distance from VIIc in mm. Open symbols indicate Pre-I neurons that were tested for DAMGO, whereas the filled symbols represent cells tested for chemical anoxia. Different filled symbols are used to indicate distinct response types during the early (<10 min) and later (20–30 min) phase of anoxia. The label “F.xx.” indicates that membrane potential responses of this cell are shown in the corresponding figure in the main paper. Asterisks indicate axons. (DOC 399 kb)

Fig. S3

Opposite respiratory phase shifts associated with the depression of breathing in newborn mammals by opioids and anoxia. As shown in the box in the center, inspiratory-related motor output is recorded, e.g., from the C4 root in the isolated newborn rat brainstem-spinal cord model. Such C4 nerve bursting is generated within inspiratory preBötC networks that are presumably driven by rhythmogenic Pre-I neurons constituting the pFRG. Specifically, pFRG neurons appear to provide preinspiratory drive to type-I Insp neurons that may play an important role in triggering the onset of preBötC bursting. The preBötC and pFRG networks are mutually synaptically coupled as evident from inspiratory-related inhibition of Pre-I neurons via receptor-coupled anion channels. The upper box shows that opioids notably prolong the time period of preinspiratory bursting in Pre-I neurons and concomitantly shorten their postinspiratory bursting. Assuming that the activity of the pFRG starts the respiratory cycle, this effect may be due to delayed generation of inspiratory motor output. This delay may result from impaired synaptic transmission between pFRG and type-I Insp neurons as suggested by a greatly reduced slope of subthreshold drive potentials in type-I Insp neurons. Opioids also decrease the amplitude and duration of the C4 burst, but increase the time to its peak. According to this hypothetical scenario, a C4 motor burst is not elicited when the depressed transmission involving both pre- and postsynaptic μ-opiate receptors does not reach the threshold for activation of a preBötC burst. As shown in the lower box, anoxia decreases the delay between the onset of pFRG and preBötC bursting and thus almost synchronizes the presumably dual respiratory rhythm generator. Accordingly, the preinspiratory drive potential is shortened in type-I Insp neurons, whereas Pre-I neurons show three different responses to sustained (10–20 min) anoxia. In 48% of cells, the bursting pattern shifts toward the postinspiratory phase with concomitant depression of the duration of preinspiratory activity and the strength of postinspiratory bursting. In 22% of Pre-I neurons, the activity pattern changes to inspiratory bursting, whereas the remaining 30% are “functionally inactivated” because of greatly depressed drive potentials. Possibly because of the transformation of some Pre-I neurons into Insp cells and the concomitant depression of synaptic inhibition, C4 burst amplitude increases by ~50%, while the time to peak decreases, resulting in sharper burst resembling anoxic gasps in vivo. Not shown in this schema are hypothetic medullary neurons, which develop pronounced postinspiratory activity during anoxia as indicated by findings from voltage-sensitive dye-imaging. The overall enhanced inspiratory/postinspiratory medullary activity during anoxia may be responsible for triggering inspiratory motor bursts doublets or triplets. For more information, see text. (DOC 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballanyi, K., Ruangkittisakul, A. & Onimaru, H. Opioids prolong and anoxia shortens delay between onset of preinspiratory (pFRG) and inspiratory (preBötC) network bursting in newborn rat brainstems. Pflugers Arch - Eur J Physiol 458, 571–587 (2009). https://doi.org/10.1007/s00424-009-0645-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0645-3

Keywords

Navigation