Skip to main content

Existence of Antibiotics in Wastewater as a Pollution Indicator

  • Chapter
  • First Online:
Water Pollution and Management Practices

Abstract

Pharmaceutical compounds are chemicals that are used effectively for wide-spectrum purposes in human disease treatments and veterinary medicines, detected in water bodies, agricultural products, soil, and livestock. Several studies have been conducted to study the occurrence, distribution, and existence of antibiotics in the surface water, drinking water, aquifers, and in the effluent of wastewater treatment plants and sludge. In this chapter, the distribution of antibiotics in all environmental compartments, their sources and fate have been reviewed to trace their transformation products, and their persistence. To overcome the related problem, removal processes in wastewater treatment plants were also discussed. The sequence of their entrance to aquifers was also detailed. The impact of micropollutants and the emergence of antibiotic resistance genes were also illustrated in this chapter with possible scope for future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler N, Balzer F, Blondzik K et al (2018) Antibiotics and antibiotic resistances in the environment background, challenges and options for action. The Publisher German Environment Agency/UBA. ISSN 2363-829X. P:44.

    Google Scholar 

  • Adzitey F (2015) Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry; a mini review. World Vet J 5(3):36–41

    Article  Google Scholar 

  • Agunbiade FO, Moodley B (2016) Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ Toxicol Chem 35:36–46

    Article  CAS  Google Scholar 

  • Ahmad M, Vithanage M, Kim K et al (2014) Inhibitory effect of veterinary antibiotics on denitrification in groundwater: a microcosm approach. Sci World J 879831

    Google Scholar 

  • Al Aukidy M, Verlicchi P, Jelic A et al (2012) Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ 438:15–25

    Article  CAS  Google Scholar 

  • Alidina M, Hoppe-Jones C, Yoon M et al (2014) The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia. Sci Total Environ 478:152–162

    Article  CAS  Google Scholar 

  • Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1(134):1–7

    Google Scholar 

  • Aritstilde L, Melis A, Sposito G (2010) Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environ Sci Technol 44:1444–1450

    Article  CAS  Google Scholar 

  • Asano T, Cotruvo J (2004) Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations. Water Res 38:1941–1951

    Article  CAS  Google Scholar 

  • Ashbolt NJ, Amezquita A, Backhaus T et al (2013) Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121:993–1001

    Article  Google Scholar 

  • aus der Beek T, Weber FA, Bergmann A et al (2016) Pharmaceuticals in the environment-global occurrences and perspectives. Environ Toxicol Chem 35:823–835

    Article  CAS  Google Scholar 

  • Awad YM, Ok YS, Igalavithana AD et al (2016) Sulphamethazine in poultry manure changes carbon and nitrogen mineralisation in soils. Chem Ecol 32:899–918

    Article  CAS  Google Scholar 

  • Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    Article  CAS  Google Scholar 

  • Barnes KB, Kolpin DW, Furlong ET et al (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States, I. Groundwater. Sci Total Environ 402:192–200

    Article  CAS  Google Scholar 

  • Bengtsson-Palme J, Larsson DGJ (2016) Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int:86. https://doi.org/10.1016/j.envint.2015.10.015

  • Benotti MJ, Trenholm RA, Vanderford BJ et al (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43:597–603

    Article  CAS  Google Scholar 

  • Bester K (2003) Triclosan in a sewage treatment process – balances and monitoring data. Water Res 37:3891–3896

    Article  CAS  Google Scholar 

  • Bialk-Bielinska A, Maszkowska J, Mrozik W et al (2012) Sulfadimethoxine and sulfaguanidine: their sorption potential on natural soils. Chemosphere 86:1059–1060. https://doi.org/10.1016/j.chemosphere.20111111.11.058

    Article  CAS  Google Scholar 

  • Binh CTT, Heuer H, Gomes NCM et al (2007) Short-term effects of amoxicillin on bacterial communities in manured soil. FEMS Microbiol Ecol 62:290–302

    Article  CAS  Google Scholar 

  • Bird K, Boopathy R, Nathaniel R et al (2019) Water pollution and observation of acquired antibiotic resistance in Bayou Lafourche, a major drinking water source in Southeast Louisiana, USA. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-4008-5

  • Blackwell PA, Boxall ABA, Kay P et al (2005) Evaluation of a lower tier exposure assessment model for veterinary medicines. J Agric Food Chem 53:2192–2201

    Article  CAS  Google Scholar 

  • Boxall ABA, Rudd MA, Brooks BW et al (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229

    Article  Google Scholar 

  • Brain RA, Hanson ML, Solomon KR et al (2008) Aquatic plants exposed to pharmaceuticals: effects and risks. Rev Environ Contam Toxicol 192:67–115

    Article  CAS  Google Scholar 

  • Brandt KK, Sjoholm OR, Krogh KA et al (2009) Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amended with artificial root exudates. Environ Sci Technol 43:2963–2968

    Article  CAS  Google Scholar 

  • Brooks GF, Butel JS, Morse SA (2004) Jawetz, Melnick and Adelbergs medical microbiology, 23rd edn. McGraw Hill Companies, Singapore, p 877

    Google Scholar 

  • Bürgmann H, Frigon D, Gaze WH et al (2018) Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiol Ecol 94:fiy101

    Article  CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x

    Article  CAS  Google Scholar 

  • Cabeza Y, Candela L, Ronen D et al (2008) Monitoring the occurrence of emerging contaminant in the treated wastewater and groundwater between 2008 and 2010. The BaixLlobregat (Barcelona, Spain). J Hazard Mater 239–240:32–39

    Google Scholar 

  • Calderon CB, Sabundayo BP (2007) Antimicrobial classifications: drugs for bugs. In: Schwalbe R, Steele-Moore L, Goodwin AC (eds) Antimicrobial susceptibility testing protocols. CRC Press/Taylor and Frances Group. ISBN 978-0-8247-4100-6

    Google Scholar 

  • Carballa M, Omil F, Lema JM et al (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926

    Article  CAS  Google Scholar 

  • Carvalho IT, Santos L (2016) Antibiotics in the aquatic environments: a review of the European scenario. Environ Int 94:736–757

    Article  Google Scholar 

  • Cermak L, Kopecky J, Novotna J et al (2008) Bacterial communities of two contrasting soils reacted differently to lincomycin treatment. Appl Soil Ecol 40:348–358

    Article  Google Scholar 

  • Cha JM, Yang S, Carlson KH (2006) Trace determination of B-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. J Chromatogr A 1115:46–57. https://doi.org/10.1016/j.chroma.2006.02.086

    Article  CAS  Google Scholar 

  • Chen H, Zhang M (2013) Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. Environ Int 55:9–14

    Article  CAS  Google Scholar 

  • Choquet-Kastylevsky G, Vial T, Descotes J (2002) Allergic adverse reactions to sulfonamides. Curr Allergy Asthma Rep 2:16–25

    Article  Google Scholar 

  • Christian T, Schneider RJ, Färber HA et al (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44. https://doi.org/10.1002/aheh.200390014

    Article  CAS  Google Scholar 

  • Cordova-Kreylos AL, Scow KM (2007) Effects of ciprofloxacin on salt marsh sediment microbial communities. ISME J 1:585–595

    Article  CAS  Google Scholar 

  • Cui H, Wang SP, Fu J et al (2014) Influence of ciprofloxacin onmicrobial community structure and function in soils. Biol Fertil Soils 50:939–947

    Article  CAS  Google Scholar 

  • DeJongh CM, Kooij PJF, de Voogt P et al (2012) Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water. Sci Total Environ 427:70–77

    Article  CAS  Google Scholar 

  • Demoling LA, Baath E (2008) No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil. Environ Sci Technol 42:6917–6921

    Article  CAS  Google Scholar 

  • Demoling LA, Baath E, Greve G et al (2009) Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol Biochem 41:840–848

    Article  CAS  Google Scholar 

  • Diaz-Cruz M, Lopez de Alda M, Barcelo D (2003) Environmental behaviour and analysis of veterinary and human drugs in soils, sedimnets and sludge. TrAC Trends Anal Chem 22:340

    Article  CAS  Google Scholar 

  • Díaz-Cruz MS, García-Galán MJ, Barceló D (2008) Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography–quadrupole linear ion trap–mass spectrometry. J Chromatogr A 1193:50–59. https://doi.org/10.1016/j.chroma.2008.03.029

    Article  CAS  Google Scholar 

  • Diehl DL, Lapara TME (2010) Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. Environ Sci Technol 44:9128–9133

    Article  CAS  Google Scholar 

  • Dolliver H, Gupta S (2008) Antibiotic losses in leaching and surface runoff from manure-amended agricultural land. J Environ Qual 37:1227–1237

    Article  CAS  Google Scholar 

  • Dong L, Gao J, Xie X et al (2012) DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eiseniafetida. Chemosphere 89:44–51

    Article  CAS  Google Scholar 

  • ECDC (2015) (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority) and EMA (European Medicines Agency). ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food producing animals. EFSA J 13:4006. P114 http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/4006.pdf. Accessed January 2017

  • Eggen T, Asp TN, Grave K et al (2011) Uptake and translocation of metformin, ciprofloxacin and narsin in forage and crop plants. Chemosphere 85:26–33

    Article  CAS  Google Scholar 

  • Eguchi K, Nagase H, Ozawa M et al (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733–1738

    Article  CAS  Google Scholar 

  • Etebul E, Arikekpar I (2016) Antibiotics: classification and mechanisms of action with emphasis on molecular perspectives. IJAMBR 4:90–101

    Google Scholar 

  • Feitosa-Felizzola J, Chiron S (2009) Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France). J Hydrol 364:50–57. https://doi.org/10.1016/j.jhydrol.2008.10.006

    Article  CAS  Google Scholar 

  • Ferber D (2003) Antibiotic resistance. WHO advises kicking the livestock antibiotic habit. Science 301:1027

    Article  CAS  Google Scholar 

  • Fick J, Söderström H, Lindberg RH et al (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527. https://doi.org/10.1897/09-073.1

    Article  CAS  Google Scholar 

  • Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61:200–207. https://doi.org/10.1016/j.chemosphere.2005.02.016

    Article  CAS  Google Scholar 

  • Focazio MJ, Kolpin DW, Barnes KK et al (2008) A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States – (II) untreated drinking water sources. Sci Total Environ 402:201–216

    Article  CAS  Google Scholar 

  • Forni C, Cascone A, Fiori M et al (2002) Sulfadimethoxine and Azollafiliculoids Lam.: a model of drug remediation. Water Res 36:3398–3403

    Article  CAS  Google Scholar 

  • Frank U, Tacconelli E (2012) The Daschner guide to in-hopsital antibiotic therapy. European standards. Available online at: http://www.springer.com/978-3-642-18401-7. 300 p

  • Garcia-Galan MJ, Garrido T, Fraile J et al (2010) Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain). J Hydrol 383:93–101

    Article  CAS  Google Scholar 

  • Giger W, Alder AC, Golet EM et al (2003) Occurrence and fate of antibiotics as trace contaminants in waste waters, sewage sludges, and surface waters. Chimia Int J Chem 57:485–491

    Article  CAS  Google Scholar 

  • Ginebreda A, Muñoz I, de Alda ML et al (2010) Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36:153–162. https://doi.org/10.1016/j.envint.2009.10.003

    Article  CAS  Google Scholar 

  • Göbel A, Thomsen A, McArdell CS et al (2005) Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J Chromatogr A 1085:179–189. https://doi.org/10.1016/j.chroma.2005.05.051

    Article  CAS  Google Scholar 

  • Göbel A, Mcardell C, Joss A et al (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372:361–371

    Article  CAS  Google Scholar 

  • Gothwal R, Shashidhar T (2014) Antibiotic pollution in the environment: a review. Clean Soil Air Water 42(9999):1–11

    Google Scholar 

  • Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39

    Article  CAS  Google Scholar 

  • Grewal D, Gill R, Gosal SS (2006) Influence of antibiotic cefotaxime on somatic embryogenesis and plant regeneration in indica rice. Biotechnol J 1:1158–1162

    Article  CAS  Google Scholar 

  • Grzebelus E, Skop L (2014) Effect of β-lactam antibiotics on plant regeneration in carrot protoplast cultures. In Vitro Cell Dev Biol Plant 50:568–575

    Article  CAS  Google Scholar 

  • Guo XY, Hao LJ, Qiu PZ et al (2016) Pollution characteristics of 23 veterinary antibiotics in livestock manure and manure-amended soils in Jiangsu province, China. J Environ Sci Heal B 51(6):383–392

    Article  CAS  Google Scholar 

  • Gurr C, Reinhard M (2006) Harnessing natural attenuation of pharmaceuticals and hormones in rivers. Environ Sci Technol 40:2872–2876

    Article  CAS  Google Scholar 

  • Haack SK, Metge DW, Fogarty LR et al (2012) Effects on groundwater microbial communities of an engineered 30-day in situ exposure to the antibiotic sulfamethoxazole. Environ Sci Technol 46:7478–7486

    Article  CAS  Google Scholar 

  • Halling-Sorensen B (2000) Algal toxicity of antibacterial agent used in intensive farming. Chemosphere 40:731–739

    Article  CAS  Google Scholar 

  • Hammesfahr U, Heuer H, Manzke B et al (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583–1591

    Article  CAS  Google Scholar 

  • Hammesfahr U, Bierl R, Thiele-Bruhn S (2011) Combined effects of the antibiotic sulfadiazine and liquid manure on the soil microbial-community structure and functions. J Plant Nutr Soil Sci 174:614–623

    Article  CAS  Google Scholar 

  • Hannaa N, Sunb P, Sunc Q et al (2018) Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environ Int 114:131–142

    Article  CAS  Google Scholar 

  • Heise J, Höltge S, Schrader S et al (2006) Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere 65:2352–2357

    Article  CAS  Google Scholar 

  • Heuer H, Focks A, Lamshoft M et al (2008) Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biol Biochem 40:1892–1900

    Article  CAS  Google Scholar 

  • Higgins PG, Fluit AC, Schmitz FJ (2003) Fluoroquinolones: structure and target sites. Curr Drug Targets 4:181–190

    Article  CAS  Google Scholar 

  • Hillis DG, Fletcher J, Solomon KR et al (2011) Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch Environ Contam Toxicol 60:220–232

    Article  CAS  Google Scholar 

  • Hocquet D, Muller A, Bertrand X (2016) What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. J Hosp Infect 93:395–402

    Article  CAS  Google Scholar 

  • Holling CS, Bailey JL, Vanden Heuvel B, Kinney CA (2012) Uptake of human pharmaceuticals and personal care products by cabbage (Brassica campestris) from fortified and biosolids-amended soils. J Environ Monit 14:3029. https://doi.org/10.1039/c2em30456b

    Article  CAS  Google Scholar 

  • Hou L, Yin G, Liu M et al (2015) Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environ Sci Technol 49:326–333

    Article  CAS  Google Scholar 

  • Hu J, Shi J, Chang H et al (2008) Phenotyping and genotyping of antibiotic-resistant Escherichia Coli isolated from a Natural River basin. Environ Sci Technol 42:3415–3420. https://doi.org/10.1021/es7026746

    Article  CAS  Google Scholar 

  • Hu X, Zhou Q, Lou Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China. Environ Pollut 158:2992–2998

    Article  CAS  Google Scholar 

  • Huerta-Fontela M, Teresa Galceran M, Ventura F (2011) Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res 45:1432–1442

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M, Lukow T (2004) Effects of tetracycline on the soil microflora: function, diversity, resistance. J Soils Sediments 4:11–16

    Article  CAS  Google Scholar 

  • Ji X, Shen Q, Liu F et al (2012) Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater 235–236:178–185

    Article  CAS  Google Scholar 

  • Jia A, Wan Y, Xiao Y et al (2012) Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Res 46:387–394

    Article  CAS  Google Scholar 

  • Jjemba P (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on vegetation: a review. Agric Ecosyst Environ 93:267–278

    Article  Google Scholar 

  • Jjemba PK (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol Environ Saf 63:113–130

    Article  CAS  Google Scholar 

  • Jones O, Voulvoulis N, Lester J (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36:5013–5022

    Article  CAS  Google Scholar 

  • Ju F, Beck K, Yin X et al (2019) Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effuent microbiomes. ISME J 13:346–360

    Article  Google Scholar 

  • Jurado A, Vazquez-Sune E, Carrera J et al (2012) Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci Total Environ 440:82–94

    Article  CAS  Google Scholar 

  • Kanda R, Griffin P, James H et al (2003) Pharmaceutical and personal care products in Sewage treatment works. J Environ Monit 5:823–830

    Article  CAS  Google Scholar 

  • Kapoor G, Saigal S, Elongavan A (2017) Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 33:300–305

    Article  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    Article  CAS  Google Scholar 

  • Khan SJ, Ongerth JE (2002) Estimation of pharmaceutical residues in primary and secondary sewage sludge based on quantities of use and fugacity modelling. Water Sci Technol 46(3):105–113

    Article  CAS  Google Scholar 

  • Klaver AL, Matthews RA (1994) Effects of oxytetracycline on nitrification in a model aquatic system. Aquaculture 123:237–247

    Article  CAS  Google Scholar 

  • Klein EY, Van Boeckel TP, Martinez EM et al (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci 115(15):201717295. https://doi.org/10.1073/pnas.1717295115

    Article  CAS  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K et al (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig manure. Environ Pollut 153:315–322

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK et al (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085

    Article  CAS  Google Scholar 

  • Kümmerer K (2004) Resistance in the environment. J Antimicrob Chemother 54:311–320. https://doi.org/10.1093/jac/dkh325

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment–a review–part I. Chemosphere 75:417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  CAS  Google Scholar 

  • Lai K, Johnson K, Scrimshaw M et al (2000) Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ Sci Technol 34:3890–3894

    Article  CAS  Google Scholar 

  • Lai K, Scrimshaw M, Lester JN (2002) Prediction of bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems. Sci Total Environ 289:159–168

    Article  CAS  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME et al (2012) Emerging organic contamination in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  Google Scholar 

  • Larsson DGJ (2014) Antibiotics in the Environmnet. Upsala J Med Sci 119:108–112

    Article  Google Scholar 

  • Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008

    Article  CAS  Google Scholar 

  • Laverman AM, Cazier T, Yan C et al (2015) Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments. Environ Sci Pollut Res Int 22:13702–13709

    Article  CAS  Google Scholar 

  • Li D, Yang M, Hu J (2008) Determination and fate of oxytetracycline and related compounds in oxytetrac. Environ Toxicol 27:80–86

    Article  CAS  Google Scholar 

  • Li D, Qi R, Yang M et al (2011) Bacterial community characteristics under long-term antibiotic selection pressures. Water Res 45:6063–6073

    Article  CAS  Google Scholar 

  • Li W, Shi Y, Gao L et al (2013) Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China. Chemosphere 92:435–444

    Article  CAS  Google Scholar 

  • Li XW, Xie YF, Li CL et al (2014) Investigation of residual fluoroquinolones in a soil–vegetable system in an intensive vegetable cultivation area in Northern China. Sci Total Environ 468–469:258–264. https://doi.org/10.1016/j.scitotenv.2013.08.057

    Article  CAS  Google Scholar 

  • Lienert J, Bürki T, Escher BI (2007) Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Sci Technol J IntAssoc Water Pollut Res 56:87–96. https://doi.org/10.2166/wst.2007.560

    Article  CAS  Google Scholar 

  • Lindberg R, Olofsson U, Rendahl P et al (2006) Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40:1042

    Article  CAS  Google Scholar 

  • Lindberg RH, Fick J, Tysklind M (2010) Screening of antimycotics in Swedish sewage treatment plants–waters and sludge. Water Res 44:649–657. https://doi.org/10.1016/j.watres.2009.10.034

    Article  CAS  Google Scholar 

  • Lindsey ME, Meyer M, Thurman EM (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73(19):4640–4646. https://doi.org/10.1021/ac010514w

    Article  CAS  Google Scholar 

  • Liu F, Wu J, Ying GG et al (2011) Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Appl Microbiol Biotechnol 95:1615–1623

    Article  CAS  Google Scholar 

  • Liu W, Pan N, Chen W et al (2012) Effect of veterinary oxytetracycline on functional diversity of soil microbial community. Plant Soil Environ 58:295–301

    Article  CAS  Google Scholar 

  • Liu B, Li Y, Zhang X et al (2015) Effects of chlortetracycline on soil microbial communities: comparisons of enzyme activities to the functional diversity via Biolog Eco Platesâ„¢. Eur J Soil Biol 68:69–76

    Article  CAS  Google Scholar 

  • López-Serna R, Jurado A, Vázquez-Suñé E et al (2013) Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona. Spain Environ Pollut 174:305–315. https://doi.org/10.1016/j.envpol.2012.11.022

    Article  CAS  Google Scholar 

  • Louvet JN, Giammarino C, Potier O et al (2010) Adverse effects of erythromycin on the structure and chemistry of activated sludge. Environ Pollut 158:688–693

    Article  CAS  Google Scholar 

  • Mackay D, Hughes DM, Luisa RM, Bonnell M (2014) The Role of Persistence in Chemical Evaluations. 10:588–594. https://doi.org/10.1002/ieam.1545

    Article  Google Scholar 

  • Madden JC, Enoch SJ, Hewitt M et al (2009) Pharmaceuticals in the environment: good practice in predicting acute ecotoxicological effects. Toxicol Lett 185:85–101

    Article  CAS  Google Scholar 

  • Madikizela LM, Tavengwa NT, Chimuka L (2017) Status of pharmaceuticals in African water bodies: occurrence, removal and analytical methods. J Environ Manag 193:211–220. https://doi.org/10.1016/j.jenvman.2017.02.022

    Article  CAS  Google Scholar 

  • Mahmood AR, Al-Haideri HH, Fikrat M, Hassan FM (2019) Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq. Hind Adv Pub Heal, Article ID 7851354, 10 pages. https://doi.org/10.1155/2019/7851354

  • Managaki S, Murata A, Takada H et al (2007) Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ Sci Technol 41:8004–8010. https://doi.org/10.1021/es0709021

    Article  CAS  Google Scholar 

  • Martinez JL, Baquero F, Andersson DI (2007) Predicting antibiotic resistance. Nat Rev Microbiol 5:958–965

    Article  CAS  Google Scholar 

  • Matongo S, Birungi G, Moodley B et al (2015) Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere 134:133–140

    Article  CAS  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW et al (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465

    Article  CAS  Google Scholar 

  • Meakins N, Bubb J, Lester JN (1994) The fate and behaviour of organic micropollutants during wastewater treatment processes: a review. Int J Environ Pollut 4:27

    Google Scholar 

  • Meng Q, Liu Z, Zhang Y et al (2014) Effects of antibiotics on in vitro-cultured cotyledons. Vitr Cell Dev Biol Plant 50:436–441

    Article  CAS  Google Scholar 

  • Michael I, Rizzo L, McArdell CS et al (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47:957–995

    Article  CAS  Google Scholar 

  • Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enerofloxacin in crop plants. Chemosphere 52:1233–1244

    Article  CAS  Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814. https://doi.org/10.1016/j.envint.2008.10.008

    Article  CAS  Google Scholar 

  • Mompelat S, Thomas O, Le Bot B (2011) Contamination levels of human pharmaceutical compounds in French surface and drinking water. J Environ Monit 13:2929–2939

    Article  CAS  Google Scholar 

  • Moore D (2015). Antibiotic classification and mechanism. http://www.orthobullets.com/basic-science/9059/antibiotic-classification-and-mechanism

  • Muller AK, Westergaard K, Christensen S et al (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44:49–58

    Article  CAS  Google Scholar 

  • Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effuent and biosolids of five wastewater utilities in Michigan. Water Res 45:681–693

    Article  CAS  Google Scholar 

  • Na G, Fang X, Cai Y et al (2013) Occurrence, distribution, and bioaccumulation of antibiotics in coastal environment of Dalian, China. Mar Pollut Bull 69:233–237

    Article  CAS  Google Scholar 

  • Naslund J, Hedman JE, Agestrand C (2008) Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquat Toxicol 90:223–227

    Article  CAS  Google Scholar 

  • Opris O, Soran ML, Coman V (2013) Determination of some frequently used antibiotics in waste water using solid phase extraction followed by high performance liquid chromatography with diode array and mass spectrometry detection. Cent Eur J Chem 11:1343–1351

    CAS  Google Scholar 

  • Orya J, Bricheux G, Togola A et al (2016) Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent. Environ Pollut 214:635–645

    Article  CAS  Google Scholar 

  • Östman M, Lindberg RH, Fick J et al (2017) Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 115:318–328

    Article  CAS  Google Scholar 

  • Park J, Kim MH, Choi K et al (2007) Environmental risk assessment of pharmaceuticals: model application for estimating pharmaceutical exposures in the Han River Basin, Re-06. Korea Environment Institute, p 201

    Google Scholar 

  • Pauwels B, Verstraete W (2006) The treatment of hospital wastewater: an appraisal. Water Health 4:405–416

    Article  CAS  Google Scholar 

  • Pei R, Kim SC, Carlson KH et al (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435. https://doi.org/10.1016/j.watres.2006.04.017

    Article  CAS  Google Scholar 

  • Peng X, Yu Y, Tang C et al (2008) Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta. South China Sci Total Environ 397:158–166

    Article  CAS  Google Scholar 

  • Peng X, Tang C, Yu Y et al (2009) Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China. Environ Int 35:303–309

    Article  CAS  Google Scholar 

  • Peng X, Zhang K, Tang C et al (2011) Distribution pattern, behavior and fate of antibacterials in urban aquatic environments in South China. J Environ Monit 13:446–454

    Article  CAS  Google Scholar 

  • Peterson LR (2008) Currently available antimicrobial agents and their potential for use as monotherapy. Clin Microbial Infect 14:30–45

    Article  CAS  Google Scholar 

  • Poirel L, Brinas L, Verlinde A et al (2005) BEL-1, a novel clavulanic acid-inhibited extended-spectrum beta-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:3743–3748

    Article  CAS  Google Scholar 

  • Polk RE, Johnson CK, McClish D et al (2004) Predicting hospital rates of fluoroquinolone-resistant Pseudomonas Aeruginosa from fluoroquinolone use in US hospitals and their surrounding communities. Clin Infect Dis 39:497–503. https://doi.org/10.1086/422647

    Article  Google Scholar 

  • Pomati F, Netting AG, Calamari D et al (2004) Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocysrissp. and Lemma minor. Aquat Toxicol 67:387–396

    Article  CAS  Google Scholar 

  • Proia L, Lupini G, Osorio V et al (2013) Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere 92:1126–1135

    Article  CAS  Google Scholar 

  • Pruden A, Larsson DGJ, Amezquita A et al (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121:878–885

    Article  Google Scholar 

  • Quanten L, Chaerle L, Noben JP et al (2007) Effects of tetracycline on wild-type and inducible P35So IPT-5/TETR transgenic tobacco plants. Physiol Plant 130:290–300

    Article  CAS  Google Scholar 

  • Reddersen K, Heberer T, Dünnbier U (2002) Identification and significance of phenazone drugs and their metabolites in ground and drinking water. Chemosphere 49:539–544

    Article  CAS  Google Scholar 

  • Reinthaler FF, Posch J, Feierl G et al (2003) Antibiotic resistance of E. Coli in sewage and sludge. Water Res 37:1685–1690. https://doi.org/10.1016/S0043-1354(02)00569-9

    Article  CAS  Google Scholar 

  • Renew JE, Huang CH (2004) Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. J Chromatogr A 1042:113–121. https://doi.org/10.1016/j.chroma.2004.05.056

    Article  CAS  Google Scholar 

  • Rizzo L, Manaia C, Merlin C et al (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    Article  CAS  Google Scholar 

  • Roberts PH, Thomas KV (2006) The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci Total Environ 356:143–153. https://doi.org/10.1016/j.scitotenv.2005.04.031

    Article  CAS  Google Scholar 

  • Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24:423–430. https://doi.org/10.1897/04-210R.1

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Chamorro S, Marti E et al (2015) Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 69:234–242

    Article  CAS  Google Scholar 

  • Rodriguez-Rojas A, Rodriguez-Beltran J, Couce A et al (2013) Antibiotics and antibiotic resistance: a better fight against evolution. Int J Med Microbiol 303:293–297

    Article  CAS  Google Scholar 

  • Russell AD (2004) Types of antibiotics and synthetic antimicrobial agents. In: Denyer SP (ed) Hugo and Russells pharmaceutical microbiology, 7th edn. Blackwell Science, London, pp 152–186

    Chapter  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Schauss K, Focks A, Leininger S et al (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456

    Article  CAS  Google Scholar 

  • Schlegel HG (2003) General microbiology, 7th edn. Cambridge University Press, Cambridge, p 676

    Google Scholar 

  • Schmitt H, Haapakangas H, Van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biol Biochem 37:1882–1892

    Article  CAS  Google Scholar 

  • Schwarzbauer J, Heim S, Brinker S et al (2002) Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Res 36:2275–2287

    Article  CAS  Google Scholar 

  • Segura PA, Takada H, Correa JA et al (2015) Global occurrence of anti-infectives in contaminated surface waters: impact of income inequality between countries. Environ Int 80:1386–1398. https://doi.org/10.1016/j.envint.2015.04.001

    Article  CAS  Google Scholar 

  • Sengelov G, Agerso Y, Halling-Sorensen B et al (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595

    Article  CAS  Google Scholar 

  • Singer H, Muller S, Tixier C et al (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998

    Article  CAS  Google Scholar 

  • Singer RS, Finch R, Wegener HC et al (2003) Antibiotic resistance – the interplay between antibiotic use in animals and human beings. Lancet Infect Dis 3:47–51

    Article  Google Scholar 

  • Singer AC, Howard BM, Johnson AC et al (2008) Meeting report: risk assessment of tamiflu use under pandemic conditions. Environ Health Perspect 116:1563–1567

    Article  Google Scholar 

  • Singer AC, Shaw H, Rhodes V et al (2016) Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol 7:1–22. https://doi.org/10.3389/fmicb.2016.01728

    Article  Google Scholar 

  • Slatore CG, Tilles SA (2004) Sulfonamide hypersensitivity. Immunol Allergy Clin North Am 24:477–490

    Article  Google Scholar 

  • Smith DL, Harris AD, Johnson JA et al (2002) Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci USA 99:6434–6439

    Article  CAS  Google Scholar 

  • Stackelberg PE, Gibs J, Furlong ET et al (2007) Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci Total Environ 377:255–272

    Article  CAS  Google Scholar 

  • Standley LJ, Rudel RA, Swartz CH et al (2008) Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems. Environ Toxicol Chem 27:2457–2468. https://doi.org/10.1897/07-604.1

    Article  CAS  Google Scholar 

  • Stuart M, Lapworth D, Crane E et al (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21

    Article  CAS  Google Scholar 

  • Suarez S, Carballa M, Omil F et al (2008) Chemlnform Abstract: how are pharmaceutical and personal care products (PPCPs) removed from Urban wastewaters? Rev Environ Sci Bio/Technol 7:125–138

    Article  CAS  Google Scholar 

  • Sui Q, Cao X, Lu S et al (2015) Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerg Con 1:14–24

    Google Scholar 

  • Szczepanowski R, Linke B, Krahn I et al (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 155:2306–2319

    Article  CAS  Google Scholar 

  • Tarazona J, Vega M (2002) hazard and risk assessment of chemicals for terres. Toxicology 181–182:187–191

    Article  Google Scholar 

  • Taylor NM, Davies RH, Ridley A et al (2008) A survey of fluoroquinolone resistance in Escherichia Coli and thermophilic campylobacter spp. on poultry and pig farms in great Britain. J Appl Microbiol 105:1421–1431. https://doi.org/10.1111/j.1365-2672.2008.03877.x

    Article  CAS  Google Scholar 

  • Teijon G, Candela L, Tamoh K et al (2010) Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 408:3584–3595. https://doi.org/10.1016/j.scitotenv.2010.04.041

    Article  CAS  Google Scholar 

  • Ternes T, Joss A (2006) Human pharmaceuticals, hormones and fragrances: the challenge of micropollutants in urban water management. IWA Publishing, p 406

    Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166:145–167. https://doi.org/10.1002/jpln.200390023

    Article  CAS  Google Scholar 

  • Tomlinson TG, Boon AG, Trotman CNA (1966) Inhibition of nitrification in activated sludge process of sewage disposal. J Appl Bacteriol 29:266–291

    Article  CAS  Google Scholar 

  • Toth JD, Feng Y, Dou Z (2011) Veterinary antibiotics at environmentally relevant concentrations inhibits soil iron reduction and nitrification. Soil Biol Biochem 43:2470–2472

    Article  CAS  Google Scholar 

  • Underwood JC, Harvey RW, Metge DW et al (2011) Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ Sci Technol 45:3096–3101

    Article  CAS  Google Scholar 

  • Unger IM, Goyne KW, Kennedy AC et al (2013) Antibiotic effects on microbial community characteristics in soils under conservation management practices. Soil Sci Soc Am J 77:100–112

    Article  CAS  Google Scholar 

  • USP (2003) Veterinary pharmaceutical information monographs – antibiotics. J Veter Pharmacol Therap 26(s2):1–271

    Google Scholar 

  • Valcarcel Y, Alonso SG, Rodriguez-Gil JL et al (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 84:1336–1348

    Article  CAS  Google Scholar 

  • van Hoek AHAM, Mevius D, Guerra B et al (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203. https://doi.org/10.3389/fmicb.2011.00203

    Article  Google Scholar 

  • Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment – a review. Sci Total Environ 429:123

    Article  CAS  Google Scholar 

  • Verlicchi P, Zambello E, Al Aukidy M (2013) Analysis, removal, effects and risk of pharmaceuticals in the water cycle: occurrence and transformation in the environment. In: Petrovic M, Perez S, Barcelo D (eds) Comprehensive analytical chemistry, vol 62. Elsevier, p 231

    Google Scholar 

  • Verlicchi P, Al Aukidy M, Zambello E (2015) What have we learned from worldwide experiences on the management and treatment of hospital effluent? – an overview and a discussion on perspectives. Sci Total Environ 514:467–491

    Article  CAS  Google Scholar 

  • Vila J, Martí S, Sánchez-Céspedes J (2007) Porins, efflux pumps and multidrug resistance in Acinetobacterbaumannii. J Antimicrob Chemother 59(6):1210–1215

    Article  CAS  Google Scholar 

  • Voulvoulis N, Barcelo D, Verlicchi P (2013) Pharmaceutical Residues in Sewage Treatment Works and their Fate in the Receiving Environment. 2015. Issues in Environmental Science and Technology No. 41 Print ISBN: 978-1-78262-189-8 PDF eISBN: 978-1-78262-234-5 ISSN 1350-7583A catalogue record for this book is available from the British Libraryr The Royal Society of Chemistry p 312

    Google Scholar 

  • Voulvoulis N, Barcelo D, Verlicchi P (2016) Pharmaceutical residues in sewage treatment works and their fate in the receiving environment. 2015. Issues in environmental science and technology no. 41 Print ISBN: 978-1-78262-189-8 PDF eISBN: 978-1-78262-234-5 ISSN 1350-7583A catalogue record for this book is available from the British Library, The Royal Society of Chemistry, p 312

    Google Scholar 

  • Waggot A (1981) Trace organic substances in the river Lee (Great Britain). In: Cooper WJ (ed) Chemistry in water reuse, 1st edn. Ann Arbour Science, Ann Arbor, pp 55–99

    Google Scholar 

  • Walsh C (2003) Antibiotics: actions, origins, resistance, 1st edn. ASM Press, Washington, DC, p 345

    Book  Google Scholar 

  • Watkinson A, Murby E, Costanzo S (2007) Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res 41:4164–4176

    Article  CAS  Google Scholar 

  • Weber KP, Petersen EJ, Bissegger S et al (2014) Effect of gold nanoparticles and ciprofloxacin on microbial catabolism: a community-based approach. Environ Toxicol Chem 33:44–51

    Article  CAS  Google Scholar 

  • White D, Cox E (2013) Fighting the impact of antibiotic-resistance. FDA Consumer Health Information. www.fda.gov/downloads/…/UCM350090.pdf. Accessed 4 Sept 2016

  • WHO (2019) Essential medicine and Health products. https://www.who.int/medicines/news/2019/WHO_releases2019AWaRe_classification_antibiotics/en/

  • Wu G, Liu Z, Chen T et al (2015) Elevation-dependent variations of tree growth and intrinsic water-use efficiency in Schrenk spruce (Picea schrenkiana) in the western Tianshan Mountains. China Front Plant Sci 6:309. https://doi.org/10.3389/fpls.2015.00309

  • Xie X, Zhou Q, Bao Q et al (2011) Genotoxicity of tetracycline as an emerging pollutant on root meristem cells of wheat (Triticum Aestivum L.). Environ Toxicol 26:417–423. https://doi.org/10.1002/tox.20567

    Article  CAS  Google Scholar 

  • Xu WH, Zhang G, Zou SC et al (2007) Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high performance liquid chromatography–electrospray ionization tandem mass spectrometry. Environ Pollut 145:672–679

    Article  CAS  Google Scholar 

  • Xu J, Xu Y, Wang H et al (2015) Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 119:1379–1385

    Article  CAS  Google Scholar 

  • Yang QX, Zhang J, Zhu KF et al (2009) Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J Environ Sci 21:954–959

    Article  CAS  Google Scholar 

  • Yang Y, Li B, Zou S et al (2014) Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res 62:97–106

    Article  CAS  Google Scholar 

  • Yaronskaya EB, Gritskevich ER, Trukhanovets NL et al (2007) Effects of kinetin on early stages of chlorophyll biosynthesis in streptomycin-treated barley seedling. Russ J Plant Physiol 54:388–395

    Article  CAS  Google Scholar 

  • Yasojima M, Nakada N, Komori K et al (2006) Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in Japan. Water Sci Technol 53:227

    Article  CAS  Google Scholar 

  • Yiruhan Y, Wang Q, Mo C et al (2010) Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ Pollut 158:2350–2358

    Article  CAS  Google Scholar 

  • Yoneyama H, Katsumata R (2006) Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotechnol Biochem 70:1060–1075

    Article  CAS  Google Scholar 

  • Zhang D, Lin L, Luo Z et al (2011) Occurrence of selected antibiotics in Jiulongjiang River in various seasons, South China. J Environ Monit 13:1953–1960. https://doi.org/10.1039/c0em00765j

    Article  CAS  Google Scholar 

  • Zhang CH, Tang JW, Wang LL et al (2015) Occurrence of antibiotics in water and sediment from Zizhuyuan Lake. Pol J Environ Stud 24(4):1831–1836

    Article  CAS  Google Scholar 

  • Zhengqi Y, Weinberg HS, Meyer MT (2004) Occurrence of antibiotics in drinking water. The University of North Carolina at Chapel Hill U.S. Geological Survey Kansas p 138–142

    Google Scholar 

  • Zhou L, Ying G, Liu S et al (2013) Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci Total Environ 452–453:365–376

    Article  CAS  Google Scholar 

  • Zuccato E, Castiglioni S, Bagnati R et al (2010) Source, occurrence and fate of antibiotics in the Italian aquatic environment. J Hazard Mater 179:1042–1048

    Article  CAS  Google Scholar 

  • Zwiener C, Frimmel F (2003) Short-term testes with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac. Sci Total Environ 309:201–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Haideri, H.H., Hassan, F.M., Abdul-Ameer, S.H. (2021). Existence of Antibiotics in Wastewater as a Pollution Indicator. In: Singh, A., Agrawal, M., Agrawal, S.B. (eds) Water Pollution and Management Practices. Springer, Singapore. https://doi.org/10.1007/978-981-15-8358-2_3

Download citation

Publish with us

Policies and ethics