Skip to main content

Accumulation of Uremic Toxins in Systemic Organs and the Effect of AST-120

  • Chapter
  • First Online:
Uremic Toxins and Organ Failure
  • 251 Accesses

Abstract

Kidney disease progresses to end-stage renal failure (ESRD) and requires hemodialysis, peritoneal dialysis, and renal transplantation. Recently, the pathogenesis and pathophysiology of kidney disease have changed drastically against the background of changes in lifestyle-related diseases and an aging society. Moreover, it was found that minor renal dysfunction, albuminuria, and proteinuria were associated with stroke, myocardial infarction, and cardiovascular disease, before reaching ESRD. Chronic kidney disease (CKD) is defined as continuous renal damage, or reduction of renal function over a period of more than 3 months. Age-related renal function decline and lifestyle-related diseases are strongly involved in the progression of CKD. Many clinical studies in Japan and overseas have reported that CKD increases the risk of mortality and cardiovascular diseases, such as myocardial infarction, stroke, and heart failure. Uremic toxins are closely associated with the development of these complications. This chapter reviews organ damage caused by uremic toxins accumulated in systemic organs and the ameliorating effect of oral adsorbent AST-120.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W, European Uremic Toxin Work G. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43. https://doi.org/10.1046/j.1523-1755.2003.00924.x.

    Article  CAS  PubMed  Google Scholar 

  2. Vanholder R, Fouque D, Glorieux G, Heine GH, Kanbay M, Mallamaci F, Massy ZA, Ortiz A, Rossignol P, Wiecek A, Zoccali C, London GM, European Renal Association European D, Transplant Association European R, Cardiovascular Medicine working G. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endo. 2016;4(4):360–73. https://doi.org/10.1016/S2213-8587(16)00033-4.

    Article  Google Scholar 

  3. Iwata K, Watanabe H, Morisaki T, Matsuzaki T, Ohmura T, Hamada A, Saito H. Involvement of indoxyl sulfate in renal and central nervous system toxicities during cisplatin-induced acute renal failure. Pharm Res. 2007;24(4):662–71. https://doi.org/10.1007/s11095-006-9183-2.

    Article  CAS  PubMed  Google Scholar 

  4. Koppe L, Pillon NJ, Vella RE, Croze ML, Pelletier CC, Chambert S, Massy Z, Glorieux G, Vanholder R, Dugenet Y, Soula HA, Fouque D, Soulage CO. P-Cresyl sulfate promotes insulin resistance associated with CKD. J Am Soc Nephrol. 2013;24(1):88–99. https://doi.org/10.1681/ASN.2012050503.

    Article  CAS  PubMed  Google Scholar 

  5. Niwa T. Update of uremic toxin research by mass spectrometry. Mass Spectrom Rev. 2011;30(3):510–21. https://doi.org/10.1002/mas.20323.

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka H, Iwasaki Y, Yamato H, Mori Y, Komaba H, Watanabe H, Maruyama T, Fukagawa M. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone. 2013;56(2):347–54. https://doi.org/10.1016/j.bone.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  7. Yeh YC, Huang MF, Liang SS, Hwang SJ, Tsai JC, Liu TL, Wu PH, Yang YH, Kuo KC, Kuo MC, Chen CS. Indoxyl sulfate, not p-cresyl sulfate, is associated with cognitive impairment in early-stage chronic kidney disease. Neurotoxicology. 2016;53:148–52. https://doi.org/10.1016/j.neuro.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  8. Deguchi T, Ohtsuki S, Otagiri M, Takanaga H, Asaba H, Mori S, Terasaki T. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int. 2002;61(5):1760–8. https://doi.org/10.1046/j.1523-1755.2002.00318.x.

    Article  CAS  PubMed  Google Scholar 

  9. Enoki Y, Watanabe H, Arake R, Sugimoto R, Imafuku T, Tominaga Y, Ishima Y, Kotani S, Nakajima M, Tanaka M, Matsushita K, Fukagawa M, Otagiri M, Maruyama T. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep. 2016;6:32084. https://doi.org/10.1038/srep32084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int. 2003;63(5):1671–80. https://doi.org/10.1046/j.1523-1755.2003.00906.x.

    Article  CAS  PubMed  Google Scholar 

  11. Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem. 1997;272(30):18526–18,529.

    Article  CAS  Google Scholar 

  12. Sato E, Saigusa D, Mishima E, Uchida T, Miura D, Morikawa-Ichinose T, Kisu K, Sekimoto A, Saito R, Oe Y, Matsumoto Y, Tomioka Y, Mori T, Takahashi N, Sato H, Abe T, Niwa T, Ito S. Impact of the oral adsorbent AST-120 on organ-specific accumulation of uremic toxins: LC-MS/MS and MS imaging techniques. Toxins (Basel). 2017;10(1):19. https://doi.org/10.3390/toxins10010019.

    Article  CAS  Google Scholar 

  13. Niwa T, Emoto Y, Maeda K, Uehara Y, Yamada N, Shibata M. Oral sorbent suppresses accumulation of albumin-bound indoxyl sulphate in serum of haemodialysis patients. Nephrol Dial Transplant. 1991;6(2):105–9. https://doi.org/10.1093/ndt/6.2.105.

    Article  CAS  PubMed  Google Scholar 

  14. Schulman G, Vanholder R, Niwa T. AST-120 for the management of progression of chronic kidney disease. Int J Nephrol Renov Dis. 2014;7:49–56. https://doi.org/10.2147/IJNRD.S41339.

    Article  CAS  Google Scholar 

  15. Watanabe K, Watanabe T, Nakayama M. Cerebro-renal interactions: impact of uremic toxins on cognitive function. Neurotoxicology. 2014;44:184–93. https://doi.org/10.1016/j.neuro.2014.06.014.

    Article  CAS  PubMed  Google Scholar 

  16. Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K, Otagiri M, Terasaki T. Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem. 2002;83(1):57–66. https://doi.org/10.1046/j.1471-4159.2002.01108.x.

    Article  CAS  PubMed  Google Scholar 

  17. Assem M, Lando M, Grissi M, Kamel S, Massy ZA, Chillon JM, Henaut L. The impact of uremic toxins on cerebrovascular and cognitive disorders. Toxins (Basel). 2018;10(7):303. https://doi.org/10.3390/toxins10070303.

    Article  CAS  Google Scholar 

  18. Lin YT, Wu PH, Liang SS, Mubanga M, Yang YH, Hsu YL, Kuo MC, Hwang SJ, Kuo PL. Protein-bound uremic toxins are associated with cognitive function among patients undergoing maintenance hemodialysis. Sci Rep. 2019;9(1):20388. https://doi.org/10.1038/s41598-019-57,004-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sato E, Tanaka A, Oyama J, Yamasaki A, Shimomura M, Hiwatashi A, Ueda Y, Amaha M, Nomura M, Matsumura D, Nakamura T, Node K. Long-term effects of AST-120 on the progression and prognosis of pre-dialysis chronic kidney disease: a 5-year retrospective study. Heart Vessels. 2016;31(10):1625–32. https://doi.org/10.1007/s00380-015-0785-7.

    Article  PubMed  Google Scholar 

  20. Ellis RJ, Small DM, Vesey DA, Johnson DW, Francis R, Vitetta L, Gobe GC, Morais C. Indoxyl sulphate and kidney disease: Causes, consequences and interventions. Nephrology (Carlton). 2016;21(3):170–7. https://doi.org/10.1111/nep.12580.

    Article  CAS  Google Scholar 

  21. Narumi K, Sato E, Hirose T, Yamamoto T, Nakamichi T, Miyazaki M, Sato H, Ito S. (Pro)renin receptor is involved in mesangial fibrosis and matrix expansion. Sci Rep. 2018;8(1):16. https://doi.org/10.1038/s41598-017-18,314-w.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saito S, Yisireyili M, Shimizu H, Ng HY, Niwa T. Indoxyl sulfate upregulates prorenin expression via nuclear factor-kappaB p65, signal transducer and activator of transcription 3, and reactive oxygen species in proximal tubular cells. J Ren Nutr. 2015;25(2):145–8. https://doi.org/10.1053/j.jrn.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  23. Enomoto A, Takeda M, Tojo A, Sekine T, Cha SH, Khamdang S, Takayama F, Aoyama I, Nakamura S, Endou H, Niwa T. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol. 2002;13(7):1711–20. https://doi.org/10.1097/01.asn.0000022017.96399.b2.

    Article  CAS  PubMed  Google Scholar 

  24. Miyamoto Y, Watanabe H, Noguchi T, Kotani S, Nakajima M, Kadowaki D, Otagiri M, Maruyama T. Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney. Nephrol Dial Transplant. 2011;26(8):2498–502. https://doi.org/10.1093/ndt/gfq785.

    Article  CAS  PubMed  Google Scholar 

  25. Asai M, Kumakura S, Kikuchi M. Review of the efficacy of AST-120 (KREMEZIN((R))) on renal function in chronic kidney disease patients. Ren Fail. 2019;41(1):47–56.

    Article  CAS  Google Scholar 

  26. Sato E, Mori T, Mishima E, Suzuki A, Sugawara S, Kurasawa N, Saigusa D, Miura D, Morikawa-Ichinose T, Saito R, Oba-Yabana I, Oe Y, Kisu K, Naganuma E, Koizumi K, Mokudai T, Niwano Y, Kudo T, Suzuki C, Takahashi N, Sato H, Abe T, Niwa T, Ito S. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep. 2016;6:36618. https://doi.org/10.1038/srep36618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Enoki Y, Watanabe H, Arake R, Fujimura R, Ishiodori K, Imafuku T, Nishida K, Sugimoto R, Nagao S, Miyamura S, Ishima Y, Tanaka M, Matsushita K, Komaba H, Fukagawa M, Otagiri M, Maruyama T. Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction. J Cachexia Sarcopenia Muscle. 2017;8(5):735–47. https://doi.org/10.1002/jcsm.12202.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nishikawa M, Ishimori N, Takada S, Saito A, Kadoguchi T, Furihata T, Fukushima A, Matsushima S, Yokota T, Kinugawa S, Tsutsui H. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress. Nephrol Dial Transplant. 2015;30(6):934–42. https://doi.org/10.1093/ndt/gfv103.

    Article  CAS  PubMed  Google Scholar 

  29. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276(11):7806–10. https://doi.org/10.1074/jbc.M008922200.

    Article  CAS  PubMed  Google Scholar 

  30. Zaritsky J, Young B, Wang HJ, Westerman M, Olbina G, Nemeth E, Ganz T, Rivera S, Nissenson AR, Salusky IB. Hepcidin--a potential novel biomarker for iron status in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1051–6. https://doi.org/10.2215/CJN.05931108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamano H, Ikeda Y, Watanabe H, Horinouchi Y, Izawa-Ishizawa Y, Imanishi M, Zamami Y, Takechi K, Miyamoto L, Ishizawa K, Tsuchiya K, Tamaki T. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol Dial Transplant. 2018;33(4):586–97. https://doi.org/10.1093/ndt/gfx252.

    Article  CAS  PubMed  Google Scholar 

  32. Santana Machado T, Poitevin S, Paul P, McKay N, Jourde-Chiche N, Legris T, Mouly-Bandini A, Dignat-George F, Brunet P, Masereeuw R, Burtey S, Cerini C. Indoxyl sulfate upregulates liver P-glycoprotein expression and activity through aryl hydrocarbon receptor signaling. J Am Soc Nephrol. 2018;29(3):906–18. https://doi.org/10.1681/ASN.2017030361.

    Article  PubMed  Google Scholar 

  33. Edey MM. Male sexual dysfunction and chronic kidney disease. Front Med. 2017;4:32. https://doi.org/10.3389/fmed.2017.00032.

    Article  Google Scholar 

  34. Rathi M, Ramachandran R. Sexual and gonadal dysfunction in chronic kidney disease: pathophysiology. Indian J Endocr Metab. 2012;16(2):214–9. https://doi.org/10.4103/2230-8210.93738.

    Article  Google Scholar 

  35. Vollmer T, Ljungberg B, Jankowski V, Jankowski J, Glorieux G, Stegmayr BG. An in-vitro assay using human spermatozoa to detect toxicity of biologically active substances. Sci Rep. 2019;9(1):14525. https://doi.org/10.1038/s41598-019-50,929-z.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Doi K, Rabb H. Impact of acute kidney injury on distant organ function: recent findings and potential therapeutic targets. Kidney Int. 2016;89(3):555–64. https://doi.org/10.1016/j.kint.2015.11.019.

    Article  PubMed  Google Scholar 

  37. Chang JF, Liang SS, Thanasekaran P, Chang HW, Wen LL, Chen CH, Liou JC, Yeh JC, Liu SH, Dai HM, Lin WN. Translational medicine in pulmonary-renal crosstalk: Therapeutic targeting of p-Cresyl sulfate triggered nonspecific ros and chemoattractants in dyspneic patients with uremic lung injury. J Clin Med. 2018;7(9):266. https://doi.org/10.3390/jcm7090266.

    Article  CAS  PubMed Central  Google Scholar 

  38. Yabuuchi N, Sagata M, Saigo C, Yoneda G, Yamamoto Y, Nomura Y, Nishi K, Fujino R, Jono H, Saito H. Indoxyl sulfate as a mediator involved in dysregulation of pulmonary Aquaporin-5 in acute lung injury caused by acute kidney injury. Int J Mol Sci. 2016;18(1):11. https://doi.org/10.3390/ijms18010011.

    Article  CAS  PubMed Central  Google Scholar 

  39. Vaziri ND, Zhao YY, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant. 2016;31(5):737–46. https://doi.org/10.1093/ndt/gfv095.

    Article  CAS  PubMed  Google Scholar 

  40. Vaziri ND, Yuan J, Nazertehrani S, Ni Z, Liu S. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol. 2013;38(2):99–103. https://doi.org/10.1159/000353764.

    Article  CAS  PubMed  Google Scholar 

  41. Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol. 2013;37(1):1–6. https://doi.org/10.1159/000345969.

    Article  CAS  PubMed  Google Scholar 

  42. Vaziri ND, Yuan J, Khazaeli M, Masuda Y, Ichii H, Liu S. Oral activated charcoal adsorbent (AST-120) ameliorates chronic kidney disease-induced intestinal epithelial barrier disruption. Am J Nephrol. 2013;37(6):518–25. https://doi.org/10.1159/000351171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee TH, Park D, Kim YJ, Lee I, Kim S, Oh CT, Kim JY, Yang J, Jo SK. Lactobacillus salivarius BP121 prevents cisplatininduced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and pcresol sulfate via alleviating dysbiosis. Int J Mol Med. 2020;45(4):1130–40. https://doi.org/10.3892/ijmm.2020.4495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Honda Y, Nakano M. Studies on the adsorption characteristics of spherical charcoal (Kremezin). J Jpn Soc Hosp Pharm. 1997;23(3):219–24.

    Article  CAS  Google Scholar 

  45. Sato E, Hosomi K, Sekimoto A, Mishima E, Oe Y, Saigusa D, Ito S, Abe T, Sato H, Kunisawa J, Niwa T, Takahashi N. Effects of the oral adsorbent AST-120 on fecal p-cresol and indole levels and on the gut microbiota composition. Biochem Biophys Res Commun. 2020;525:773–9. https://doi.org/10.1016/j.bbrc.2020.02.141.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the assistance of the staff at the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences. We acknowledge the Tohoku University Center for Gender Equality Promotion (TUMUG) Support Project for support of the Research support staff. We would like to thank Editage (www.editage.com) for English language editing.

Finally, the author acknowledges all collaborators of the studies reviewed herein. This work was supported by Grants-In-Aid from the Japan Society of the Promotion of Science (19K08669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiko Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, E. (2020). Accumulation of Uremic Toxins in Systemic Organs and the Effect of AST-120. In: Saito, H., Abe, T. (eds) Uremic Toxins and Organ Failure. Springer, Singapore. https://doi.org/10.1007/978-981-15-7793-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7793-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7792-5

  • Online ISBN: 978-981-15-7793-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics