Skip to main content

CRISPR/Cas-Based Techniques in Plants

  • Chapter
  • First Online:
CRISPR Crops

Abstract

CRISPR techniques have been used in plants and animals with equal success. Ever since the emergence of CRISPR technology, scientists have been trying to find new CRISPR tools to address the concerns associated with the use of this technology. So, with the advent of time, new CRISPR tools have been discovered which are more precise and have broad spectrum with less limitations. The CRISPR toolbox has a number of tools for targeted modifications at epigenetic, genetic, transcriptional, and posttranscriptional level. For epigenetic modifications, dCas9 (catalytically dead Cas9) can be fused with Krüppel-associated box (KRAB), LSD1, acetyltransferase, DNA methyltransferase, DNA demethylase and some other effector domains. For targeted modifications at genomic level, Cas9 can be fused with different effector domains such as FokI, nickases, recombinases, transposases etc. For modifications at posttranscriptional level, Cas13 and CRISPRi approaches have been used successfully. CRISPR techniques are tremendous and have broad-spectrum applications compared to previous genome editing tools: ZFNs (zinc finger nucleases) and TALENs (Transcription activator like effector nucleases). Modularity of CRISPR technology has made it a technology of choice for the researchers and scientists all over the world. In this chapter, an overview of the CRISPR techniques has been given with details of their applications for different purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):5573

    Article  CAS  Google Scholar 

  • Ali Z, Eid A, Ali S, Mahfouz MM (2018) Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res 244:333–337

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15(3):305–327

    Article  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28(7):1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384

    Article  CAS  PubMed  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20(3):145–149

    Article  CAS  PubMed  Google Scholar 

  • Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Beerli RR, Barbas CF III (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20(2):135

    Article  CAS  PubMed  Google Scholar 

  • Begley S (2016) Monsanto licenses CRISPR technology to modify crops—with key restrictions. https://www.statnews.com/2016/09/22/monsanto-licenses-crispr/. Accessed 22 Sep 2016

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13(4):394–401

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF (2017) New CRISPR–Cas systems from uncultivated microbes. Nature 542(7640):237

    Article  CAS  PubMed  Google Scholar 

  • Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc R Soc Lond Ser B 270(1518):921–928

    Article  CAS  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K (2017) An agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Gao C (2014) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33(4):575–583

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: constraints and opportunities in plant breeding. Biotechnol Adv 33(6):812–829

    Article  PubMed  Google Scholar 

  • ECJ (2018) Judgment of 25 July 2018, Confédération Paysanne a.o., C-528/16, ECLI:EU:C:2018:583. https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:62016CJ0528. Accessed 23 Sep 2018.

    Google Scholar 

  • Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J (2013) Progress in plant protoplast research. Planta 238(6):991–1003

    Article  CAS  PubMed  Google Scholar 

  • Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014) Emerging technology: concerning RNA-guided gene drives for the alteration of wild populations. elife 3:e03401

    Article  PubMed  PubMed Central  Google Scholar 

  • Fauser F, Schiml S, Puchta H (2014) Both CRISPR/C as-based nucleases and nickases can be used efficiently for genome engineering in A rabidopsis thaliana. Plant J 79(2):348–359

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang D-L, Wei P, Cao F, Zhu S, Zhang F, Mao Y (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fichtner F, Castellanos RU, Ülker B (2014) Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239(4):921–939

    Article  CAS  PubMed  Google Scholar 

  • Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci 112(49):E6736–E6743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364

    Google Scholar 

  • Garrett RA, Vestergaard G, Shah SA (2011) Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol 19(11):549–556

    Article  CAS  PubMed  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017a) Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551(7681):464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017b) Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giddings LV, Potrykus I, Ammann K, Fedoroff NV (2012) Confronting the Gordian knot. Nat Biotechnol 30:208–209

    Article  CAS  PubMed  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griesbach R, Lawson R (1983) Improving plants through genetic engineering. Florists’ Rev 9:2

    Google Scholar 

  • Halperin SO, Tou CJ, Wong EB, Modavi C, Schaffer DV, Dueber JE (2018) CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560(7717):248

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Linghu Q, Nagira Y, Miki R, Taoka N, Imai R (2017) An in planta biolistic method for stable wheat transformation. Sci Rep 7(1):11443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han X, Liu Z, Chan Jo M, Zhang K, Li Y, Zeng Z, Li N, Zu Y, Qin L (2015) CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv 1(7):e1500454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haque E, Taniguchi H, Hassan M, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:617

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris RS, Petersen-Mahrt SK, Neuberger MS (2002) RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 10(5):1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78(5):742–752

    Article  CAS  PubMed  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169 (12):5429-5433

    Google Scholar 

  • Hilbeck A, Meier M, Römbke J, Jänsch S, Teichmann H, Tappeser B (2011) Environmental risk assessment of genetically modified plants-concepts and controversies. Environ Sci Eur 23(1):13

    Article  Google Scholar 

  • Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5(11):a012740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Samai P, Marraffini LA (2016) Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 164(4):710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones HD (2015) Regulatory uncertainty over genome editing. Nat Plants 1(14011):10

    Google Scholar 

  • Jusiak B, Cleto S, Perez-Piñera P, Lu TK (2016) Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol 34(7):535–547

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33(2):62–64

    Article  CAS  Google Scholar 

  • Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141(1):219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan Z, Khan SH, Ahmad A, Aslam S, Mubarik MS, Khan S (2019) CRISPR/dCas9-Mediated Inhibition of Replication of Begomoviruses. Int J Agric Biol 21(4):711–718

    CAS  Google Scholar 

  • Khatodia S, Khurana SP (2014) Trending: the Cas nuclease mediated genome editing technique. Biotechnol Today 4(1):46–49

    Article  Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana S, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016a) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016b) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau W, Fischbach MA, Osbourn A, Sattely ES (2014) Key applications of plant metabolic engineering. PLoS Biol 12(6):e1001879

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14(11):781–793

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Juste J, Cutler SR (2014) Plant genome engineering in full bloom. Trends Plant Sci 19(5):284–287

    Article  CAS  PubMed  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30(3):231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz MM, Piatek A, Stewart CN Jr (2014) Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J 12(8):1006–1014

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13(11):722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Ortigosa S, Wang K (2014) Proteolistics: a biolistic method for intracellular delivery of proteins. Transgenic Res 23(5):743–756

    Article  CAS  PubMed  Google Scholar 

  • Masani MYA, Noll GA, Parveez GKA, Sambanthamurthi R, Prüfer D (2014) Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS One 9(5):e96831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metje-Sprink J, Menz J, Modrzejewski D, Sprink T (2019) DNA-free genome editing: past, present and future. Front Plant Sci 14(9):1957

    Article  Google Scholar 

  • Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6(4):243-252.

    Google Scholar 

  • Murugan K, Babu K, Sundaresan R, Rajan R, Sashital DG (2017) The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Mol Cell 68(1):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691

    Article  CAS  PubMed  Google Scholar 

  • Nielsen AA, Voigt CA (2014) Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol 10:11

    Article  CAS  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogué F, Mara K, Collonnier C, Casacuberta JM (2016) Genome engineering and plant breeding: impact on trait discovery and development. Plant Cell Rep 35(7):1475–1486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56(3):389–400

    Article  CAS  PubMed  Google Scholar 

  • Østerberg JT, Xiang W, Olsen LI, Edenbrandt AK, Vedel SE, Christiansen A, Landes X, Andersen MM, Pagh P, Sandøe P (2017) Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci 22(5):373–384

    Article  PubMed  CAS  Google Scholar 

  • Parsi KM, Hennessy E, Kearns N, Maehr R (2017) Using an inducible CRISPR-dCas9-KRAB effector system to dissect transcriptional regulation in human embryonic stem cells. In: Eukaryotic transcriptional and post-transcriptional gene expression regulation. Springer, Cham, pp 221–233

    Chapter  Google Scholar 

  • Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015) RNA-guided transcriptional regulation in planta via synthetic dC as9-based transcription factors. Plant Biotechnol J 13(4):578–589

    Article  CAS  PubMed  Google Scholar 

  • Podevin N, Devos Y, Davies HV, Nielsen KM (2012) Transgenic or not? No simple answer! EMBO Rep 13(12):1057–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quétier F (2016) The CRISPR-Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Sci 242:65–76

    Article  PubMed  CAS  Google Scholar 

  • Rádis-Baptista G, Campelo IS, Morlighem J-ÉR, Melo LM, Freitas VJ (2017) Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol 252:15–26

    Article  PubMed  CAS  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171(2):470–480

    Article  PubMed  CAS  Google Scholar 

  • Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, Graham S, Robinson CV, Spagnolo L, White MF (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52(1):124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaart JG, van de Wiel CC, Lotz LA, Smulders MJ (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21(5):438–449

    Article  CAS  PubMed  Google Scholar 

  • Schiml S, Fauser F, Puchta H (2014) The CRISPR/C as system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Schlicher RK, Radhakrishna H, Tolentino TP, Apkarian RP, Zarnitsyn V, Prausnitz MR (2006) Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol 32(6):915–924

    Article  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686

    Article  CAS  PubMed  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443

    Article  CAS  PubMed  Google Scholar 

  • Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60(3):385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI (2017) Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol 15(3):169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subburaj S, Chung SJ, Lee C, Ryu S-M, Kim DH, Kim J-S, Bae S, Lee G-J (2016) Site-directed mutagenesis in Petunia× hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep 35(7):1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl Acad Sci 109(18):7085–7090

    Article  Google Scholar 

  • Venclovas Č (2016) Structure of Csm2 elucidates the relationship between small subunits of CRISPR-Cas effector complexes. FEBS Lett 590(10):1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:6

    Article  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Hatta MAM, Hinchliffe A, Steed A, Reynolds D (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23

    Article  PubMed  Google Scholar 

  • Werren JH (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci 108:10863–10870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolt JD, Wang K, Sashital D, Lawrence-Dill CJ (2016) Achieving plant CRISPR targeting that limits off-target effects. Plant Genome 9:3

    Article  CAS  Google Scholar 

  • Wolter F, Puchta H (2017) Knocking out consumer concerns and regulator’s rules: efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biol 18(1):43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim S-G, Kim S-T, Choe S, Kim J-S (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6(6):1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Xing H-L, Dong L, Wang Z-P, Zhang H-Y, Han C-Y, Liu B, Wang X-C, Chen Q-J (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14(1):327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu R-F, Li H, Qin R-Y, Li J, Qiu C-H, Yang Y-C, Ma H, Li L, Wei P-C, Yang J-B (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue C, Zhang H, Lin Q, Fan R, Gao C (2018) Manipulating mRNA splicing by base editing in plants. Sci China Life Sci 61(11):1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165(4):949–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Kuang Y, Ren B, Wang J, Zhang D, Lin H, Yang B, Zhou X, Zhou H (2018) Highly efficient A· T to G· C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11(4):631–634

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9(8):1956

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS (2017) Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhou Q (2014) CRISPR/Cas technology: a revolutionary approach for genome engineering. Sci China Life Sci 57(6):639–640

    Article  PubMed  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zhang R, Song G, Gao J, Li W, Han X, Chen M, Li Y, Li G (2018) Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol 18(1):302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu J-L, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35(5):438

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Song Q, Li C, Jin S, Zhang D, Wang Y, Qiu J-L, Gao C (2018) Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36(10):950–953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulqurnain Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, Z. et al. (2021). CRISPR/Cas-Based Techniques in Plants. In: Ahmad, A., Khan, S.H., Khan, Z. (eds) CRISPR Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-7142-8_2

Download citation

Publish with us

Policies and ethics