Skip to main content

Improvement in Diagnosis of Sudden Cardiac Death

  • Chapter
  • First Online:
Sudden Death
  • 567 Accesses

Abstract

Sudden death (SD) is often the first clinical manifestation of an underlying disease in previously asymptomatic, apparently “healthy” subjects. Various criteria have been used to define sudden cardiac arrest and sudden cardiac death in the medical literature. The 2006 American College of Cardiology/American Heart Association/Heart Rhythm Society (ACC/AHA/HRS Writing Committee to establish data standards for electrophysiology) included definitions to guide documentation in research and clinical practice. “[Sudden] cardiac arrest is the sudden cessation of cardiac activity so that the victim becomes unresponsive, with no normal breathing and no signs of circulation. If corrective measures are not taken rapidly, this condition progresses to sudden death. Cardiac arrest should be used to signify an event as described above, that is reversed, usually by CPR and/or defibrillation or cardioversion, or cardiac pacing. Sudden cardiac death should not be used to describe events that are not fatal.” Correct identification of future SCD victims is especially important as there is an effective treatment, namely, defibrillation via an external or internal (implanted) defibrillator. Currently, the commonly used SCD risk score based on left ventricular ejection fraction can only predict some cardiac arrest events. There is an urgent need for more effective and reliable SCD risk early warning methods. The rapid development of ECG signals, genetic markers, and a combination of multiple index risk scoring models, including the foregoing two, have opened new paths for SCD early warning diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. 2018;138(13):272–391.

    Google Scholar 

  2. Thomas H, Diamond J, Vieco A, et al. Global atlas of cardiovascular disease 2000–2016: the path to prevention and control. Glob Heart. 2018;13(3):143–63.

    Article  PubMed  Google Scholar 

  3. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke Statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chow T, Kereiakes DJ, Onufer J, et al. Does microvolt T-wave Alternans testing predict ventricular Tachyarrhythmias in patients with ischemic cardiomyopathy and prophylactic defibrillators?: the MASTER (microvolt T wave Alternans testing for risk stratification of post-myocardial infarction patients) trial. J Am Coll Cardiol. 2008;52(20):1607–15.

    Article  PubMed  Google Scholar 

  5. Jouven X, Zureik M, Desnos M, et al. Resting heart rate as a predictive risk factor for sudden death in middle-aged men. Cardiovasc Res. 2001;50(2):373–8.

    Article  CAS  PubMed  Google Scholar 

  6. Gorgels A. Out-of-hospital cardiac arrest-the relevance of heart failure. The Maastricht circulatory Arrest registry. Eur Heart J. 2003;24(13):1204–9.

    Article  PubMed  Google Scholar 

  7. Cygankiewicz I. Heart rate turbulence. Prog Cardiovasc Dis. 2013;56(2):160–71.

    Article  PubMed  Google Scholar 

  8. Disertori M, Mase M, Rigoni M, et al. Heart rate turbulence is a powerful predictor of cardiac death and ventricular arrhythmias in postmyocardial infarction and heart failure patients: a systematic review and meta-analysis. Circ Arrhythm Electrophysiol. 2016;9(12):e004610.

    Article  PubMed  Google Scholar 

  9. Al-Zaiti SS, Pietrasik G, Carey MG, et al. The role of heart rate variability, heart rate turbulence, and deceleration capacity in predicting cause-specific mortality in chronic heart failure. J Electrocardiol. 2019;52(1):70–4.

    Article  PubMed  Google Scholar 

  10. Tereshchenko LG, Shah AJ, Li Y, et al. Electrocardiographic deep terminal negativity of the P wave in V1 and risk of mortality: the National Health and nutrition examination survey III. J Cardiovasc Electrophysiol. 2014;25(11):1242–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tereshchenko LG, Henrikson CA, Sotoodehnia N, et al. Electrocardiographic deep terminal negativity of the P wave in V(1) and risk of sudden cardiac death: the atherosclerosis risk in communities (ARIC) study. J Am Heart Assoc. 2014;3(6):e001387.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stettler C, Bearth A, Allemann S, et al. QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: a 23-year follow-up. Diabetologia. 2007;50(1):186–94.

    Article  CAS  PubMed  Google Scholar 

  13. January CT, Riddle JM. Early after depolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res. 1989;64(5):977–90.

    Article  CAS  PubMed  Google Scholar 

  14. Kurl S, Makikallio TH, Rautaharju P, et al. Duration of QRS complex in resting electrocardiogram is a predictor of sudden cardiac death in men. Circulation. 2012;125(21):2588–94.

    Article  PubMed  Google Scholar 

  15. Desai AD, Yaw TS, Yamazaki T, et al. Prognostic significance of quantitative QRS duration. Am J Med. 2006;119(7):600–6.

    Article  PubMed  Google Scholar 

  16. Turrini P, Corrado D, Basso C, et al. Dispersion of ventricular depolarization-repolarization: a noninvasive marker for risk stratification in arrhythmogenic right ventricular cardiomyopathy. Circulation. 2001;103(25):3075–2080.

    Article  CAS  PubMed  Google Scholar 

  17. Kountouris E, Korantzopoulos P, Karanikis P, et al. QRS dispersion: an electrocardiographic index of systolic left ventricular dysfunction in patients with left bundle branch block. Int J Cardiol. 2004;97(2):321–2.

    Article  PubMed  Google Scholar 

  18. Das MK, Zipes DP. Fragmented QRS: a predictor of mortality and sudden cardiac death. Heart Rhythm. 2009;6(3):S8–14.

    Article  PubMed  Google Scholar 

  19. Chua KC, Teodorescu C, Reinier K, et al. Wide QRS-T angle on the 12-Lead ECG as a prediction of sudden death beyond the LV ejection fraction. J Cardiovasc Electrophysiol. 2016;27(7):833–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lingman M, Hartford M, Karlsson T, et al. Value of the QRS-T area angle in improving the prediction of sudden cardiac death after acute coronary syndromes. Int J Cardiol. 2016;218(1):1–11.

    Article  PubMed  Google Scholar 

  21. Laukkanen JA, Di Angelantonio E, Khan H, et al. T-wave inversion, QRS duration, and QRS/T angle as electrocardiographic predictors of the risk for sudden cardiac death. Am J Cardiol. 2014;113(7):1178–83.

    Article  PubMed  Google Scholar 

  22. Mewton N, Strauss DG, Rizzi P, et al. Screening for cardiac magnetic resonance scar features by 12-Lead ECG, in patients with preserved ejection fraction. Ann Noninvasive Electrocardiol. 2016;21(1):49–59.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sweeney MO, van Bommel RJ, Schalij MJ, et al. Analysis of ventricular activation using surface electrocardiography to predict left ventricular reverse volumetric remodeling during cardiac resynchronization therapy. Circulation. 2010;121(5):626–34.

    Article  PubMed  Google Scholar 

  24. Takasugi N, Goto H, Kuwahara T, et al. Sudden paradoxical QT-interval prolongation exacerbating T-wave alternans in a patient with type 3 long QT syndrome. Ann Noninvasive Electrocardiol. 2015;20(3):290–1.

    Article  PubMed  Google Scholar 

  25. Narayan SM. T-wave alternans and the susceptibility to ventricular arrhythmias. J Am Coll Cardiol. 2006;47(2):269–81.

    Article  PubMed  Google Scholar 

  26. Lu HR, Yan GX, Gallacher DJ. A new biomarker—index of cardiac electrophysiological balance (iCEB) – plays an important role in drug-induced cardiac arrhythmias: beyond QT-prolongation and Torsades de pointes (TdPs). J Pharmacol Toxicol Methods. 2013;68(2):250–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gallagher MM, Padula M, Sgueglia M, et al. Electrocardiographic markers of structural heart disease and predictors of death in 2332 unselected patients undergoing outpatient Holter recording. Europace. 2007;9(12):1203–8.

    Article  PubMed  Google Scholar 

  28. Bastiaenen R, Pantazis A, Gonna H, et al. The ventricular ectopic QRS interval (VEQSI): diagnosis of arrhythmogenic right ventricular cardiomyopathy in patients with incomplete disease expression. Heart Rhythm. 2016;13(7):1504–12.

    Article  PubMed  Google Scholar 

  29. Kentta TV, Nearing BD, Porthan K, et al. Prediction of sudden cardiac death with automated high-throughput analysis of heterogeneity in standard resting 12-lead electrocardiograms. Heart Rhythm. 2016;13(3):713–20.

    Article  PubMed  Google Scholar 

  30. Driest SLV, Vasile VC, Ommen SR, et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(9):1903–10.

    Article  PubMed  Google Scholar 

  31. Goldenberg I, Horr S, Moss AJ, Lopes CM, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57(1):51–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bezzina CR, Lahrouchi N, Priori SG. Genetics of sudden cardiac death. Circ Res. 2015;116(12):1919.

    Article  CAS  PubMed  Google Scholar 

  33. Kuo L, Chao TF, Liu CJ. Usefulness of the CHA2DS2-VASc score to predict the risk of sudden cardiac death and ventricular arrhythmias in patients with atrial fibrillation. Am J Cardiol. 2018;122(12):2049–54.

    Article  PubMed  Google Scholar 

  34. Bogle BM, Ning H, Goldberger JJ, et al. A simple community-based risk prediction score for sudden cardiac death. Am J Med. 2018;131(5):532–9.

    Article  PubMed  Google Scholar 

  35. Basso C, et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 2017;471(6):691–705.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Estes NA III, De Nofrio D. The challenge of prediction and prevention of sudden cardiac death in congestive heart failure. J Interv Card Electrophysiol. 2001;5(1):5–8.

    Article  PubMed  Google Scholar 

  37. Morin DP, Homoud MK, Estes NAM 3rd. Prediction and prevention of sudden cardiac death. Card Electrophysiol Clin. 2017;9(4):631–8.

    Article  PubMed  Google Scholar 

  38. Schmidt G. Sudden cardiac death: diagnostic help from chaos research? Prof. Dr. med. Georg Schmidt, Munich, on preventive diagnostic criteria. Interview by Beatrice Wagner. Fortschr Med. 1996;114(1–2):14, 16–7.

    CAS  PubMed  Google Scholar 

  39. Nolan J, Soar J. Images in resuscitation: the ECG in hypothermia. Resuscitation. 2005;64(2):133–4.

    Article  PubMed  Google Scholar 

  40. Cummins RO, et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein style. A statement for health professionals from a task force of the American Heart Association, the European resuscitation council, the Heart and Stroke Foundation of Canada, and the Australian resuscitation council. Circulation. 1991;84(2):960–75.

    Article  CAS  PubMed  Google Scholar 

  41. Jacobs I, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. A statement for healthcare professionals from a task force of the international liaison committee on resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa). Resuscitation. 2004;63(3):233–49.

    Article  PubMed  Google Scholar 

  42. Nishiyama C, et al. Apples to apples or apples to oranges? International variation in reporting of process and outcome of care for out-of-hospital cardiac arrest. Resuscitation. 2014;85(11):1599–609.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Perkins GD, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Resuscitation. 2015;96:328–40.

    Article  PubMed  Google Scholar 

  44. Nolan JP, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: a consensus report from a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia). Circulation. 2019;140(18):e746–57.

    Article  PubMed  Google Scholar 

  45. Kirchhof P, Breithardt G, Eckardt L. Primary prevention of sudden cardiac death. Heart. 2006;92(12):1873–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sheppard MN. The pathological investigation of sudden cardiac death. Br J Hosp Med (Lond). 2010;71(11):604–5.

    Article  Google Scholar 

  47. Semsarian C, Ingles J, Wilde AA. Sudden cardiac death in the young: the molecular autopsy and a practical approach to surviving relatives. Eur Heart J. 2015;36(21):1290–6.

    Article  PubMed  Google Scholar 

  48. Pochmalicki G, et al. Management of sudden death in a semi-rural district, seine-et-Marne: the DEFI 77 study. Arch Mal Coeur Vaiss. 2007;100(10):838–44.

    CAS  PubMed  Google Scholar 

  49. Sukhija R, et al. Implantable cardioverter defibrillators for prevention of sudden cardiac death. Clin Cardiol. 2007;30(1):3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Priori SG, et al. Update of the guidelines on sudden cardiac death of the European Society of Cardiology. Eur Heart J. 2003;24(1):13–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Z., Zhang, F., Yu, C., Tang, Z. (2021). Improvement in Diagnosis of Sudden Cardiac Death. In: Zhu, H. (eds) Sudden Death. Springer, Singapore. https://doi.org/10.1007/978-981-15-7002-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7002-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7001-8

  • Online ISBN: 978-981-15-7002-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics