Skip to main content

Cavity/Binding Site Prediction Approaches and Their Applications

  • Chapter
  • First Online:
Computer-Aided Drug Design

Abstract

The binding site of a protein governs its function by allowing binding of small and macromolecules such as nucleic acids, proteins, and other molecules. These binding molecules, also known as ligands, generally form non-covalent bonds and have transient interactions and dissociate after performing a function. The binding sites are unique and have shape complementarity to its ligands to maintain the specificity and affinity. For example, molecules such as hormones, activators, inhibitors, neuro-transmitters, and toxins have specificity in their binding sites. A ligand-binding site entails vast information about its biological function, such as the geometry, physicochemical properties, and electrostatic charge, which in turn allows binding for the highly specific ligand. Various experimental methods such as X-ray crystallography, mass spectrometry, nuclear magnetic resonance, and isothermal titration calorimetry are used to determine the binding site of proteins. For drug discovery, it is inevitable to use high throughput screening of binding sites of proteins, and computational methods give an efficient and cost-effective way of analyzing the same. Several algorithms, tools, and software are available to detect protein cavities computationally. The study of binding sites is relevant to various fields of research, including computer-aided drug design, agrochemical design, cancer mechanisms, drug formulation, and physiological regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Gromiha MM, Sarai A (2004) Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics 20(4):477–486

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Bray D, Johnson A, Lewis N, Raff M, Roberts K, Walter P (1998) Essential cell biology: an introduction to the molecular biology of the cell. Garland Publishing, New York

    Google Scholar 

  • An J, Totrov M, Abagyan R (2005) Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteomics 4(6):752–761

    Article  CAS  PubMed  Google Scholar 

  • Aqvist J, Medina C, Samuelsson JE (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng Des Sel 7(3):385–391

    Article  CAS  Google Scholar 

  • Bleicher KH, Böhm HJ, Müller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2(5):369–378

    Article  CAS  PubMed  Google Scholar 

  • Boer DR, Canals A, Coll M (2009) DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes. Dalton Trans 3:399–414

    Article  Google Scholar 

  • Bradford JR, Westhead DR (2004) Improved prediction of protein–protein binding sites using a support vector machines approach. Bioinformatics 21(8):1487–1494

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne NJ, Jackson RM (2006) Predicting protein interaction sites: binding hot-spots in protein–protein and protein–ligand interfaces. Bioinformatics 22(11):1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Capra JA, Singh M (2007) Predicting functionally important residues from sequence conservation. Bioinformatics 23(15):1875–1882

    Article  CAS  PubMed  Google Scholar 

  • Chargaff E (1950) Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia 6(6):201–209

    Article  PubMed  Google Scholar 

  • Daberdaku S (2019) Identification of protein pockets and cavities by Euclidean Distance Transform. Peer J Preprints 7:e27314v2

    Google Scholar 

  • de Beer SB, Vermeulen NP, Oostenbrink C (2010) The role of water molecules in computational drug design. Curr Top Med Chem 10(1):55–66

    Article  PubMed  Google Scholar 

  • Dessailly BH, Lensink MF, Orengo CA, Wodak SJ (2008) LigASite—a database of biologically relevant binding sites in proteins with known apo-structures. Nucleic Acids Res 36(Database):D667–D673

    Article  CAS  PubMed  Google Scholar 

  • Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737

    Article  CAS  PubMed  Google Scholar 

  • Gabb HA, Jackson RM, Sternberg MJ (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272(1):106–120

    Article  CAS  PubMed  Google Scholar 

  • Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW (2014) KBDOCK 2013: a spatial classification of 3D protein domain family interactions. Nucleic Acids Res 42(Database):D389–D395

    Article  CAS  PubMed  Google Scholar 

  • Gropper SS, Smith JL (2012) Advanced nutrition and human metabolism, 6th edn. Wadsworth Publishing, Belmont

    Google Scholar 

  • Hansch C, Klein TE (1986) Molecular graphics and QSAR in the study of enzyme-ligand interactions. On the definition of bioreceptors. Acc Chem Res 19(12):392–400

    Article  CAS  Google Scholar 

  • Henrich S, Salo-Ahen OM, Huang B, Rippmann FF, Cruciani G, Wade RC (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23(2):209–219

    CAS  PubMed  Google Scholar 

  • Hernandez M, Ghersi D, Sanchez R (2009) SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res 37(Web Server):W413–W416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetényi C, van der Spoel D (2011) Toward prediction of functional protein pockets using blind docking and pocket search algorithms. Protein Sci 20(5):880–893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16(1):127–136

    Article  CAS  PubMed  Google Scholar 

  • Huang B (2009) MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS J Integr Biol 13(4):325–330

    Article  CAS  Google Scholar 

  • Huang SY, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12(40):12899–12908

    Article  CAS  PubMed  Google Scholar 

  • Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux AC (2015) PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res 43(W1):W436–W442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang S, Gou Z, Kuznetsov IB (2007) DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics 23(5):634–636

    Article  CAS  PubMed  Google Scholar 

  • Inhester T, Bietz S, Hilbig M, Schmidt R, Rarey M (2017) Index-based searching of interaction patterns in large collections of protein-ligand interfaces. J Chem Inf Model 57(2):148–158

    Article  CAS  PubMed  Google Scholar 

  • Jambon M, Andrieu O, Combet C, Deléage G, Delfaud F, Geourjon C (2005) The SuMo server: 3D search for protein functional sites. Bioinformatics 21(20):3929–3930

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93(1):13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalidas Y, Chandra N (2008) PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins. J Struct Biol 161(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Keiser MJ, Setola V, Irwin JJ et al (2009) Predicting new molecular targets for known drugs. Nature 462(7270):175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby AJ (1996) Enzyme mechanisms, models, and mimics. Angew Chem Int Ed 35(7):706–724

    Article  Google Scholar 

  • Kleywegt GJ, Jones TA (1994) Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr 50(Pt 2):178–185

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241

    Article  CAS  PubMed  Google Scholar 

  • Koes DR, Camacho CJ (2012) PocketQuery: protein-protein interaction inhibitor starting points from protein-protein interaction structure. Nucleic Acids Res 40(Web Server):W387–W392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konc J, Janezic D (2010) ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26(9):1160–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konc J, Lešnik S, Janežič D (2015) Modeling enzyme-ligand binding in drug discovery. J Cheminf 7(1):48

    Article  CAS  Google Scholar 

  • Koshland D Jr (1995) The key–lock theory and the induced fit theory. Angew Chem Int Ed 33(23–24):2375–2378

    Article  Google Scholar 

  • Ladbury JE (1996) Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem Biol 3(12):973–980

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13(5):323–330

    Article  CAS  PubMed  Google Scholar 

  • Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9):1908–1916

    Article  CAS  PubMed  Google Scholar 

  • Laurie AT, Jackson RM (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7(5):395–406

    Article  CAS  PubMed  Google Scholar 

  • Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinf 10(1):168

    Article  Google Scholar 

  • Lehn JM (1988) Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed 27(1):89–112

    Article  Google Scholar 

  • Lesk VI, Sternberg MJ (2008) 3D-Garden: a system for modelling protein–protein complexes based on conformational refinement of ensembles generated with the marching cubes algorithm. Bioinformatics 24(9):1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7(9):1884–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Zhang C, Liu S, Zhou Y (2006) Protein binding site prediction using an empirical scoring function. Nucleic Acids Res 34(13):3698–3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macalino SJ, Gosu V, Hong S, Choi S (2015) Role of computer-aided drug design in modern drug discovery. Arch Pharm Res 8(9):1686–1701

    Article  CAS  Google Scholar 

  • Masood TB, Sandhya S, Chandra N, Natarajan V (2015) CHEXVIS: a tool for molecular channel extraction and visualization. BMC Bioinf 16:119

    Article  CAS  Google Scholar 

  • Mattos C, Ringe D (1996) Locating and characterizing binding sites on proteins. Nat Biotechnol 14(5):595–599

    Article  CAS  PubMed  Google Scholar 

  • Meslamani J, Rognan D, Kellenberger E (2011) sc-PDB: a database for identifying variations and multiplicity of ‘druggable’ binding sites in proteins. Bioinformatics 27(9):1324–1326

    Article  CAS  PubMed  Google Scholar 

  • Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63(4):892–906

    Article  CAS  PubMed  Google Scholar 

  • Norel R, Lin SL, Wolfson HJ, Nussinov R (1994) Shape complementarity at protein-protein interfaces. Biopolymers 34(7):933–940

    Article  CAS  PubMed  Google Scholar 

  • Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9(2):91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parca L, Mangone I, Gherardini PF, Ausiello G, Helmer-Citterich M (2011) Phosfinder: a web server for the identification of phosphate-binding sites on protein structures. Nucleic Acids Res 39(suppl 2):W278–W282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payandeh Z, Rajabibazl M, Mortazavi Y, Rahimpour A, Taromchi AH (2018) Ofatumumab monoclonal antibody affinity maturation through in silico modeling. Iran Biomed J 22(3):180–192

    PubMed  PubMed Central  Google Scholar 

  • Petrek M, Otyepka M, Banás P, Kosinová P, Koca J, Damborský J (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinf 7:316

    Article  CAS  Google Scholar 

  • Pierce B, Tong W, Weng Z (2005) M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics 21(8):1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Redington PK (1992) Molfit: a computer program for molecular superposition. Comput Chem 16(3):217–222

    Article  CAS  Google Scholar 

  • Roche DB, Tetchner SJ, McGuffin LJ (2011) FunFOLD: an improved automated method for the prediction of ligand binding residues using 3D models of proteins. BMC Bioinf 12:160

    Article  CAS  Google Scholar 

  • Ruppert J, Welch W, Jain AN (1997) Automatic identification and representation of protein binding sites for molecular docking. Protein Sci 6(3):524–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt S, Kuhn D, Klebe G (2002) A new method to detect related function among proteins independent of sequence and fold homology. J Mol Biol 323(2):387–406

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4(8):649–663

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server):W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng J, Gan J, Huang Z (2013) Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med Res Rev 33(5):1119–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker BA, Zhang D, Tyagi M et al (2012) IBIS (Inferred Biomolecular Interaction Server) reports, predicts and integrates multiple types of conserved interactions for proteins. Nucleic Acids Res 40(Database):D834–D840

    Article  CAS  PubMed  Google Scholar 

  • Shulman-Peleg A, Shatsky M, Nussinov R, Wolfson HJ (2008) MultiBind and MAPPIS: webservers for multiple alignment of protein 3D-binding sites and their interactions. Nucleic Acids Res 36(Web Server):W260–W264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman RB, Holladay MW (2014) The organic chemistry of drug design and drug action. Academic Press, Amsterdam

    Google Scholar 

  • Singh DB, Dwivedi S (2016) Structural insight into binding mode of inhibitor with SAHH of Plasmodium and human: interaction of curcumin with anti-malarial drug targets. J Chem Biol 9(4):107–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh DB, Tripathi T (2020) Frontiers in protein structure, function, and dynamics. Springer, Singapore

    Google Scholar 

  • Skolnick J, Brylinski M (2009) FINDSITE: a combined evolution/structure-based approach to protein function prediction. Brief Bioinform 10(4):378–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GR, Sternberg MJ (2003) Evaluation of the 3D-Dock protein docking suite in rounds 1 and 2 of the CAPRI blind trial. Proteins: Struct Funct Bioinf 52(1):74–79

    Article  CAS  Google Scholar 

  • Sousa SF, Fernandes PA, Ramos MJ (2006) Protein–ligand docking: current status and future challenges. Proteins: Struct Funct Bioinf 65(1):15–26

    Article  CAS  Google Scholar 

  • Steed JW, Turner DR, Wallace K (2007) Core concepts in supramolecular chemistry and nanochemistry. Wiley, Hoboken

    Google Scholar 

  • Tan KP, Nguyen TB, Patel S, Varadarajan R, Madhusudhan MS (2013) Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins. Nucleic Acids Res 41(Web Server):W314–W321

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till MS, Ullmann GM (2010) McVol - a program for calculating protein volumes and identifying cavities by a Monte Carlo algorithm. J Mol Model 16(3):419–429

    Article  CAS  PubMed  Google Scholar 

  • Tiwari A, Avashthi H, Jha R et al (2016) Insights using the molecular model of Lipoxygenase from Finger millet (Eleusine coracana (L.)). Bioinformation 12(3):156–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34(Web Server):W310–W314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng YY, Chen ZJ, Li WH (2010) fPOP: footprinting functional pockets of proteins by comparative spatial patterns. Nucleic Acids Res 38(Database):D288–D295

    Article  CAS  PubMed  Google Scholar 

  • von Hippel PH, Bear DG, Morgan WD, McSwiggen JA (1984) Protein-nucleic acid interactions in transcription: a molecular analysis. Annu Rev Biochem 53:389–446

    Article  Google Scholar 

  • Vyas NK (1991) Atomic features of protein-carbohydrate interactions. Curr Opin Struct Biol 1(5):732–740

    Article  CAS  Google Scholar 

  • Walker CB (1996) The acquisition of antibiotic resistance in the periodontal microflora. Periodontol 10:79–88

    Article  CAS  Google Scholar 

  • Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Gao J, Shen S, Tuszynski JA, Ruan J, Hu G (2013) An accurate method for prediction of protein-ligand binding site on protein surface using SVM and statistical depth function. Biomed Res Int 2013:409658

    PubMed  PubMed Central  Google Scholar 

  • Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie ZR, Hwang MJ (2015) Methods for predicting protein-ligand binding sites. Methods Mol Biol 1215:383–398

    Article  CAS  PubMed  Google Scholar 

  • Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R (2008) MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Res 36(Web Server):W210–W215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li Y, Lin B, Schroeder M, Huang B (2011) Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 27(15):2083–2088

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Pisabarro MT (2010) MSPocket: an orientation-independent algorithm for the detection of ligand binding pockets. Bioinformatics 27(3):351–358

    Article  PubMed  CAS  Google Scholar 

Download references

Competing Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avashthi, H., Srivastava, A., Singh, D.B. (2020). Cavity/Binding Site Prediction Approaches and Their Applications. In: Singh, D.B. (eds) Computer-Aided Drug Design. Springer, Singapore. https://doi.org/10.1007/978-981-15-6815-2_3

Download citation

Publish with us

Policies and ethics