Skip to main content

Machine Learning Approaches to Rational Drug Design

  • Chapter
  • First Online:
Computer-Aided Drug Design

Abstract

Pharmaceutical industries are multibillionaire setups with a diligent team of scientists, researchers, technical manpower, and investors. A major concern of such industries is to always curtail the time and cost factor associated with them. Bioinformatics involving machine learning (ML) methods have come to the forefront to address this problem. The predictive and statistical efficacy of ML methodologies has even proven to propose better leads than a wet lab pipeline. This chapter aims to give a brief overview of underlying principles of mainly GAs and ANNs as popular ML algorithms and deeper insight into their robust applications in the field of modern day drug design. It also attempts to share the future prospects of such ML techniques and their limitations with possible solutions hereafter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arif JM, Siddiqui MH, Akhtar S, Al-Sagair O (2013) Exploitation of in silico potential in prediction, validation and elucidation of mechanism of anti-angiogenesis by novel compounds: comparative correlation between wet lab and in silico data. Int J Bioinforma Res Appl 965:336–348

    Article  Google Scholar 

  • Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A, Sponaugle K, Bowser R (2018) Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 135(2):227–247

    Article  CAS  PubMed  Google Scholar 

  • Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H (1997) Basic concepts of artificial neural networks (ANN) modeling in the application to pharmaceutical development. Pharm Dev Technol 2(2):95–109

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Muggleton S, Santos J (2008) Learning probabilistic logic models from probabilistic examples. Mach Learn 73(1):55–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T (2018) The rise of deep learning in drug discovery. Drug Discov Today 23(6):1241–1250

    Article  PubMed  Google Scholar 

  • Choudhury C, Narahari SG (2019) Pharmacophore modelling and screening: concepts, recent developments and applications in rational drug design. In: Mohan C (ed) Structural bioinformatics: applications in preclinical drug discovery process. Challenges and advances in computational chemistry and physics. Springer, Cham, pp 25–53

    Google Scholar 

  • Cuperlovic-Culf M (2018) Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites 8(1):4

    Article  PubMed Central  CAS  Google Scholar 

  • DiMasi JA, Grabowski HG, Hansen RW (2015) The cost of drug development. N Engl J Med 372(20):1972

    Article  PubMed  Google Scholar 

  • Douguet DE, Thoreau GG (2000) A genetic algorithm for the automated generation of small organic molecules: drug design using an evolutionary algorithm. J Comput Aided Mol Des 14:449–466

    Article  CAS  PubMed  Google Scholar 

  • Doyle OM, Mehta MA, Brammer MJ (2015) The role of machine learning in neuroimaging for drug discovery and development. Psychopharmacology 232:4179–4189

    Article  CAS  PubMed  Google Scholar 

  • Durrant JD, McCammon JA (2010) NNScore: a neural-network-based scoring function for the characterization of protein− ligand complexes. J Chem Inf Model 50(10):1865–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Advances in neural information processing systems. Curran Associates, Red Hook, pp 2224–2232

    Google Scholar 

  • Ekins S (2016) The next era: deep learning in pharmaceutical research. Pharm Res 33(11):2594–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrero E, Dunham I, Sanseau P (2017) In silico prediction of novel therapeutic targets using gene–disease association data. J Transl Med 15(1):182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox T, Kriegl JM (2006) Machine learning techniques for in silico modeling of drug metabolism. Curr Top Med Chem 6(15):1579–1591

    Article  CAS  PubMed  Google Scholar 

  • Gibson E, Li W, Sudre C, Fidon L, Shakir DI, Wang G, Eaton-Rosen Z, Gray T, Doel R, Hu Y, Whyntie T, Nachev P, Modat M, Barratt DC, Ourselin S, Cardoso MJ, Vercauteren T (2018) NiftyNet: a deep-learning platform for medical imaging. Comput Methods Prog Biomed 158:113–122

    Article  Google Scholar 

  • Goswami M, Akhtar S, Osama K (2018) Strategies for monitoring and modeling growth of hairy root cultures: an in silico perspective. In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy roots. Springer, Singapore

    Google Scholar 

  • Gupta MK, Agarwal K, Prakash N, Singh DB, Misra K (2012) Prediction of miRNA in HIV-1 genome and its targets through artificial neural network: a bioinformatics approach. Netw Model Anal Health Inf Bioinf 1:141–151

    Article  Google Scholar 

  • Gupta CL, Akhtar S, Bajpai P (2014) In silico protein modeling: possibilities and limitations. EXCLI J 13:513–515

    PubMed  PubMed Central  Google Scholar 

  • Hessler G, Baringhaus KH (2018) Artificial intelligence in drug design. Molecules 23(10):2520

    Article  PubMed Central  CAS  Google Scholar 

  • Huang G, Li J, Wang P, Li W (2017) A review of computational drug repositioning approaches. Comb Chem High Throughput Screen 20:831. https://doi.org/10.2174/1386207321666171221112835

    Article  CAS  Google Scholar 

  • Huang G, Yan F, Tan D (2018) A review of computational methods for predicting drug targets. Curr Protein Pept Sci 19(6):562–572

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Bian Y, Hu Z, Wang L, Xie X (2018) Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J 20(3):58

    Article  PubMed  CAS  Google Scholar 

  • Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in-silico-chemico-biological approach. Chem Biol Interact 171:165–176

    Article  CAS  PubMed  Google Scholar 

  • Lavecchia A (2015) Machine- learning approaches in drug discovery: methods and applications. Drug Discov Today 20(3):318–331

    Article  PubMed  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Kim YH, Kim N, Kang DW (2017) Deep into the brain: artificial intelligence in stroke imaging. J Stroke 19(3):277

    Article  PubMed  PubMed Central  Google Scholar 

  • Leelananda SP, Lindert S (2016) A review of computational methods for predicting drug targets. Beilstein J Org Chem 12:694–2718

    Article  CAS  Google Scholar 

  • Lo YC, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23(8):1538–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luechtefeld T, Marsh D, Rowlands C, Hartung T (2018) Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci 165(1):98–212

    Article  CAS  Google Scholar 

  • Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model 55(2):263–274

    Article  CAS  PubMed  Google Scholar 

  • Maltarollo VG, Kronenberger T, Espinoza GZ, Oliveira PR, Honorio KM (2019) Advances with SVM for novel drug discovery. Expert Opin Drug Discovery 14(1):23–33

    Article  CAS  Google Scholar 

  • Mandal AK, Johnson C, Wu F, Bornemeier D (2007) Identifying promisingcompounds in drug discovery: genetic algorithms and some new statistical techniques. J Chem Inf Model 47(3):81–988

    Article  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Myint KZ, Wang L, Tong Q, Xie XQ (2012) Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions. Mol Pharm 9(10):2912–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niculescu SP (2003) Artificial neural networks and genetic algorithms in QSAR. J Mol Struct 622(1–2):71–83

    Article  CAS  Google Scholar 

  • Oquendo MA, Baca-Garcia E, Artes-Rodriguez A, Perez-Cruz F, Galfalvy HC, Blasco-Fontecilla H, Madigan D, Duan N (2012) Machine learning and data mining: strategies for hypothesis generation. Mol Psychiatry 17(10):956–959

    Article  CAS  PubMed  Google Scholar 

  • Panteleev J, Gao H, Jia L (2018) Recent applications of machine learning in medicinal chemistry. Bioorg Med Chem Lett 28(17):2807–2815

    Article  CAS  PubMed  Google Scholar 

  • Patra TK, Meenakshisundaram V, Hung JH, Simmons DS (2017) Neural-network-biased genetic algorithms for materials design: evolutionary algorithms that learn. ACS Comb Sci 19(2):96–107

    Article  CAS  PubMed  Google Scholar 

  • Pu L, Naderi M, Liu T, Wu H, Mukhopadhyay S, Brylinski M (2019) eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol 20(2):1–15

    Google Scholar 

  • Rashid MBMA, Chow EK (2019) Artificial intelligence-driven designer drug combinations: from drug development to personalized medicine. SLAS Technol 24(1):124–125

    PubMed  Google Scholar 

  • Rashid J, Hodson H (2017) Google DeepMind and healthcare in an age of algorithms. Health Technol 7(4):351–367

    Article  Google Scholar 

  • Rodrigues T, Werner M, Roth J, da Cruz EH, Marques MC, Akkapeddi P, Werz O (2018) Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor. Chem Sci 9(34):6899–6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas R (2013) Neural networks: a systematic introduction. Springer-Verlag, Berlin

    Google Scholar 

  • Sayeed U, Wadhwa G, Jamal QMS, Kamal MA, Akhtar S, Siddiqui MH, Khan MS (2016) MHC binding peptides for designing of vaccines against Japanese encephalitis virus: a computational approach. Saudi J Biol Sci 25(8):1546–1551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider G, Bohm HJ (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7:64–70

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Schneider G (2016) De novo design at the edge of chaos: miniperspective. J Med Chem 59:4077–4086

    Article  CAS  PubMed  Google Scholar 

  • Searls DB (2005) Data integration: challenges for drug discovery. Nat Rev Drug Discov 4(1):45

    Article  CAS  PubMed  Google Scholar 

  • Segler MH, Kogej T, Tyrchan C, Waller MP (2017) Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 4(1):120–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Segler MH, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698):604

    Article  CAS  PubMed  Google Scholar 

  • Seifert MH, Kraus J, Kramer B (2007) Virtual high-throughput screening of molecular databases. Curr Opin Drug Discov Devel 10(3):298–307

    CAS  PubMed  Google Scholar 

  • Shaked I, Oberhardt MA, Atias N, Sharan R, Ruppin E (2016) Metabolic network prediction of drug side effects. Cell Syst 2(3):209–213

    Article  CAS  PubMed  Google Scholar 

  • Tamaddoni-Nezhad AR, Kakas CA, Muggleton S (2006) Application of abductive ILP to learning metabolic network inhibition from temporal data. Mach Learn 64(1–3):209–230

    Article  Google Scholar 

  • Terfloth L, Gasteiger J (2001) Neural networks and genetic algorithms in drug design. Drug Discov Today 6(20):102–108

    Article  Google Scholar 

  • Varnek A, Baskin II (2011) Chemoinformatics as a theoretical chemistry discipline. Mol Inf 30(1):20–32

    Article  CAS  Google Scholar 

  • Yang JM, Kao CY (2000) Flexible ligand docking using a robust evolutionary algorithm. J Comput Chem 21:988–998

    Article  CAS  Google Scholar 

  • Yang H, An Z, Zhou H, Hou Y (2018) Application of machine learning methods in bioinformatics. AIP Conf Proc 1967:040015. https://doi.org/10.1063/1.5039089

    Article  CAS  Google Scholar 

  • Yosipof A, Guedes RC, Garcia-Sosa AT (2018) Data mining and machine learning models for predicting drug likeliness and their disease or organ category. Front Chem 6:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong F, Xing J, Li X, Liu X, Fu Z, Xiong Z, Lu D, Wu X, Zhao J, Tan X, Li F, Luo X, Li K, Chen Z, Zheng M, Jiang H (2018) Artificial intelligence in drug design. Sci China Life Sci 61(10):1191–1204

    Article  PubMed  Google Scholar 

Download references

Competing Interest

The authors declare that there are no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhtar, S., Khan, M.K.A., Osama, K. (2020). Machine Learning Approaches to Rational Drug Design. In: Singh, D.B. (eds) Computer-Aided Drug Design. Springer, Singapore. https://doi.org/10.1007/978-981-15-6815-2_12

Download citation

Publish with us

Policies and ethics