Skip to main content

Silvopasture Options for Enhanced Biological Productivity of Degraded Pasture/Grazing Lands: An Overview

  • Chapter
  • First Online:
Agroforestry for Degraded Landscapes

Abstract

Grazing lands in different regions of the world have become very fragile and unsustainable due to unbalanced utilization, resulting in large-scale degradation. The primary cause of degradation is the demographic pressure on land, leading to loss of vegetative cover through deforestation and overgrazing. About 60% of the world’s agricultural land is grazing land, supporting about 360 million cattle and over 600 million sheep and goats. Many of the world’s grazing areas are threatened with degradation, especially in the semi-arid and subhumid zones. For an estimated 100 million people in arid areas, and probably a similar number in other zones, grazing livestock is the only possible source of livelihood; therefore, the management of grazing lands needs priority not only for livelihood security of millions of poor people but also for the environmental security. There are sufficient evidences which prove that even simple protection from grazing or by control grazing can result in a significant increase in production, greater tree regeneration, erosion control and amelioration of soil in terms of increase in organic carbon, nutrients and biological activity. The various approaches for managing the grazing lands include control grazing or complete fencing, judicious application of fertilizers, introduction of legume components, optimizing harvest schedules, moisture conservation, fodder farming under old plantations, use of improved productive varieties of grasses and legumes for fodder production and retaining or introducing nitrogen-fixing trees. Protection of existing trees on grazing lands and introduction of nitrogen-fixing trees constitute a sustainable and productive silvopastoral system. Multipurpose tree species can also be adopted in degraded grazing lands with poor vegetation cover or by developing location-specific silvopastoral models. This chapter describes the status of grazing lands and approaches to improve their productivity and develop sustainable silvopastoral agroforestry systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu RC, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3:1–7

    Article  Google Scholar 

  • Aich EL (1987) Fodder trees and shrubs in range and farming systems in North Africa. In: legume trees and other fodder trees as protein sources for livestock-FAO animal production and health paper 102. Food and Agriculture Organization of the United Nations, Rome. www.fao.org/3/T0632E05htm

  • Al Muzaini S (2003) Environmental measures to control sand movement in Kuwait. In: Alsharhan AS, Wood WW, Goudie AS, Fowler A, Abdellatif EM (eds) Desertification in the third millennium. Swets & Zeitlinger Publishers, Lisse, The Netherlands, pp 309–313

    Chapter  Google Scholar 

  • Amézquita MC, Amézquita E, Casasola F, Rámirez BL, Giraldo H, Gómez ME, Llanderal T, Velázquez J, Ibrahim M (2008) C stock and sequestration. In: Mannetje L, Amézquita MC, Buurman P, Ibrahim MA (eds) Carbon sequestration in tropical grassland ecosystems. Wageningen Academic Publishers, Wageningen, pp 49–67

    Google Scholar 

  • Amundson RG, Ali AR, Belsky AJ (1995) Stomatal responsiveness to changing light intensity increases rain use efficiency of below-tree-crown vegetation in tropical savannas. J Arid Environ 29:139–153

    Article  Google Scholar 

  • Aryal DR, Gomez-Gonzalez RR, Hernandez-Nuriasmu R, Morales-Ruiz DE (2019) Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agrofor Syst 93:213–227

    Article  Google Scholar 

  • Ascencio-Rojas L, Valles-de la Mora B, Castillo-Gallegos E, Ibrahim M (2019) In situ ruminal degradation and effective degradation of foliage from six tree species during dry and rainy seasons in Veracruz, Mexico. Agrofor Syst 93:123–133

    Article  Google Scholar 

  • Asner GP, Elmore AJ, Martin RE, Olander LP (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:11.1–11.39

    Article  Google Scholar 

  • Axelrod DI (1985) Rise of the grassland biome, central North America. Bot Rev 51:163–201

    Article  Google Scholar 

  • Barrett-Lennard EG (2003) Saltland pastures in Australia-A practice guide. Dept of Agriculture, State of Western Australia, CSIRO, CRC for Plant-based Management of Dry Salinity in Australia, p 176

    Google Scholar 

  • Barros E, Neves A, Blanchart E, Fernandes ECM, Wandelli E, Lavelle P (2003) Development of the soil macrofauna community under silvopastoral and agrosilvicultural systems in Amazonia. Pedobiologia 47:273–280

    Article  Google Scholar 

  • Barton DN, Benjamin T, Cerdán CR, DeClerck F et al (2016) Assessing ecosystem services from multifunctional trees in pastures using Bayesian belief networks. Ecosyst Serv 18:165–174

    Article  Google Scholar 

  • Bedunah DJ, Angerer JP (2012) Rangeland degradation, poverty, and conflict: how can rangeland scientists contribute to effective responses and solutions? Rangeland Ecol Manag 65:606–612

    Article  Google Scholar 

  • Beerling D (2007) The emerald planet: how plants changed the Earth’s history. Oxford University Press, Oxford

    Book  Google Scholar 

  • Belsky AJ (1994) Influences of trees on savanna productivity: tests of shade, nutrients and tree-grass competition. Ecology 75:922–932

    Article  Google Scholar 

  • Belsky AJ, Mwonga SM, Duxbury JM (1993) Effects of wide spaced trees and livestock grazing on understory environments in tropical savannas. Agrofor Syst 24:1–20

    Article  Google Scholar 

  • Billore SK, Mall LP (1985) Nutrient composition and inventory in a tropical grassland under varying grazing stress. In: Misra KC (ed) Ecology and resource management in tropics. Bhargava Book Depot, Varanasi, India, pp 112–132

    Google Scholar 

  • Blair JM, Nippert J, Briggs J (2014) Grassland ecology. In: Monson R (ed) The plant sciences–ecology and the environment, vol 8. Springer-Verlag, Berlin, pp 389–423

    Google Scholar 

  • Bokhari UG, Singh JS (1974) Effects of temperature and clipping on growth, carbohydrate reserves and root exudation of Western Wheat grass in hydrophonic culture. Crop Sci 14:790–794

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    Article  CAS  PubMed  Google Scholar 

  • Boyala J, Sanou J, Teklehaimanot Z, Kalinganire A, Ouedraogo SJ (2014) These systems reflect the ecological knowledge of the farmers of such risk prone environments. Curr Opin Environ Sustain 6:28–34

    Article  Google Scholar 

  • Bredenkamp GJ, Spada F, Kazmierczak E (2002) On the origin of northern and southern hemisphere grasslands. Plant Ecol 163:209–229

    Article  Google Scholar 

  • Bridges EM, Oldeman LR (1999) Global assessment of human-induced soil degradation. Arid Soil Res Rehab 13:319–325

    Article  Google Scholar 

  • Caballé G, Fernández ME, Gyenge J, Lantschner V, Rusch V, Letourneau F, Borrelli L (2016) Silvopastoral systems based on natural grassland and ponderosa pine in NW Patagoni a (Argentina). In: Peri PL, Dube F, Varella A (eds) Silvopastoral systems in southern South America. Springer International Publication, Switzerland, pp 89–116

    Chapter  Google Scholar 

  • Cajas-Girón YS, Sinclair FL (2001) Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean Region of Colombia. Agrofor Syst 5:215–225

    Article  Google Scholar 

  • Calle Z, Murgueitio E, Galindo W, Galindo V, Uribe F, Solarte L (2012) El móncoro o solera Cordia gerascanthus: un árbol nativo ideal para los sistemas silvopastoriles de la región Caribe y el Magdalena Medio. Carta Fedegán 128:54–64

    Google Scholar 

  • Cardenas A, Moliner A, Hontoria C, Ibrahim M (2019) Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agrofor Syst 93:229–239

    Article  Google Scholar 

  • Casanova-Lugo F, Petit-Aldana J, Solorio-Sanches FJ, Parsons D, Ramires-Aviles L (2014) Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in mixed and pure fodder banks systems in Yucatan, Mexico. Agrofor Syst 88(1):29e39

    Article  Google Scholar 

  • Caughenour MB, McNaughton SJ, Wallace LL (1984) Simulation study of East African perennial graminoid responses in defoliation. Ecol Model 26:177–202

    Article  Google Scholar 

  • Cava MGB, Pilon NAL, Ribeiro MC, Durigan G (2017) Abandoned pastures cannot spontaneously recover the attributes of old-growth savannas. J Appl Ecol 55:1164–1172

    Article  Google Scholar 

  • Chará J, Rivera JE, Barahona R, Murgueitio E, Deblitz C, Reyes E, Mauricio R, Molina J, Flores M, Zuluaga A (2017) Intensive silvopastoral systems: economics and contribution to climate change mitigation and public policies. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty. Advances in Agroforestry 12. Springer, Dordrecht

    Google Scholar 

  • Chaturvedi OP, Kaushal R, Tomar JMS, Prandiyal AK, Panwar P (2014) Agroforestry for wasteland rehabilitation: mined, ravine, and degraded watershed areas. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security and ecosystem services, Advances in Agroforestry, vol 10. Springer, Dordrecht, pp 233–272

    Chapter  Google Scholar 

  • Chen CP, Halim RA, Chin FY (1992) Fodder trees and shrubs in range and farming systems for the Asian and Pacific regions. In: Legume trees and other fodder trees as protein sources for livestock-FAO animal production and health paper 102. Food and Agriculture Organization, United Nations, Rome

    Google Scholar 

  • Clavijo MP, Cornaglia PS, Batisttella A, Borodowski E (2019) Floristic enrichment of the understory increases forage production and carrying capacity of temperate silvopastoral systems. Agrofor Syst 93:95–102

    Article  Google Scholar 

  • Coupland RT (1992) Ecosystems of the world: natural grasslands: eastern Hemisphere and Resume, vol 8 B. Elsevier Science Publishers, Amsterdam, the Netherlands

    Google Scholar 

  • Craigie I, Baillie J, Balmford A, Carbone C, Collen B, Green R, Hutton J (2010) Large mammal population declines in Africa’s protected areas. Biol Conserv 143:2221–2228

    Article  Google Scholar 

  • Da Silva JMC, Bates JM (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical Savanna hotspot. Bioscience 52(3):225–233

    Article  Google Scholar 

  • Dabadghao PM, Shankarnarayan KA (1973) The Grass cover of India. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Dagang ABK, Nair PKR (2003) Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agrofor Syst 59:149–155

    Article  Google Scholar 

  • Dagar JC (1987a) Species composition and plant biomass of an ungrazed and a grazed grassland at Ujjain,India. Trop Ecol 28:208–215

    Google Scholar 

  • Dagar JC (1987b) Responses of clipping treatments on nine palatable perennial grasses. Trop Ecol 28:216–221

    Google Scholar 

  • Dagar JC (1987c) Studies on reclamation of Kshipra ravines. Indian J For 10(2):83–89

    Google Scholar 

  • Dagar JC (1995a) Soil conservation values of some grasses and forbs. Proc Indian Natn Sci Acad B 61:163–170

    Google Scholar 

  • Dagar JC (1995b) Agroforestry systems for the Andaman and Nicobar Islands. Int Tree Crops J 8:107–128

    Article  Google Scholar 

  • Dagar JC (2000) Agroforestry systems for coastal and island regions. Indian J Agr 2:59–74

    Google Scholar 

  • Dagar JC (2001) Biological spectrum and successional trends in Kshipra watershed areas. Indian J For 24(3):351–356

    Google Scholar 

  • Dagar JC (2014) Greening salty and waterlogged lands through agroforestry systems for livelihood security and better environment. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security &ecosystem services, Advances in Agroforestry, vol 10, pp 273–332

    Chapter  Google Scholar 

  • Dagar JC (2018a) Ravines: formation, extent, classification, evolution and measures of prevention and control. In: Dagar JC, Singh AK (eds) Ravine lands: greening for livelihood and environmental security. Springer Nature, Singapore, pp 19–67

    Google Scholar 

  • Dagar JC (2018b) Perspectives of vegetation ecology and biodiversity for management of ravine lands. In: Dagar JC, Singh AK (eds) Ravine lands: greening for livelihood and environmental security. Springer Nature, Singapore, pp 69–118

    Google Scholar 

  • Dagar JC (2018c) Utilization of degraded saline habitats and poor-quality waters for livelihood security. Scho J Food & Nutr 1(3):p19. SJFN.MSID.000115 (On line publication)

    Google Scholar 

  • Dagar JC, Gupta S (2016) Agroforestry: potentials for rehabilitation of degraded lands, constraints and the way forward. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 47–98

    Google Scholar 

  • Dagar JC, Mall LP (1980) Studies on the vegetation of ravines and banks of the river Kshipra and its tributaries. J Indian Bot Soc 59:234–245

    Google Scholar 

  • Dagar JC, Minhas PS (eds) (2016) Agroforestry for management of waterlogged saline soils and poor-quality waters. Advances in agroforestry, vol 13. Springer, Dordrecht, p 210

    Google Scholar 

  • Dagar JC, Pathak PS (2005) Grassland dynamics and their management. Range Manag Agroforetsry 26(1):7–31

    Google Scholar 

  • Dagar JC, Singh NT (1999) Plant resources of Andaman & Nicobar Islands. Bishen Singh Mahendra Pal Singh Publishers, Dehra Dun, India, p 985

    Google Scholar 

  • Dagar JC, Singh G (2003) Pasture production in degraded and problematic soils – Status and Prospects. In: Jakhmola RC, Jain RK (eds) Sustainable animal production. Pionter Publishers, Jaipur, India, pp 94–119

    Google Scholar 

  • Dagar JC, Singh AK (eds) (2018) Ravine lands: greening for livelihood and environmental security. Springer Nature Pte Ltd, Singapore

    Google Scholar 

  • Dagar JC, Singh G, Singh NT (2001) Evaluation of forest and fruit trees used for rehabilitation of semiarid alkali-sodic soils in India. Arid Land Res Manag 15:115–133

    Article  CAS  Google Scholar 

  • Devendra C (1992) Nutritional potential of fodder trees and shrubs as protein sources in ruminant nutrition. In: legume trees and other fodder trees as protein sources for livestock-FAO animal production and health paper 102. Food and Agriculture Organization of the United Nations, Rome. www.fao.org/3/T0632E07.htm. Retrieved from 24 July 2019

  • Devendra C (2007) Perspectives on animal production systems in Asia. Livest Sci 106(1):1–18

    Article  Google Scholar 

  • Devendra C (2014) Perspectives on the potential of silvopastoral systems. Agrotechnol 3(1):p8. https://doi.org/10.4172/2168-9881.1000117

    Article  Google Scholar 

  • Dixon AP, Faber-Langendoen D, Josse C, Morrison J, Loucks CJ (2014) Distribution mapping of world grassland types. J Biogeogr 41:2003–2019

    Article  Google Scholar 

  • Downing TE, Pearson HA, Garcia-Downing C (eds) (1992) Development or destruction: the conversion of tropical forest to pasture in Latin America. Westview Press, Boulder

    Google Scholar 

  • Dregne HE, Chou N-T (1992) Global desertification dimensions and costs. In: Dregne HE (ed) Degradation and restoration of arid lands. Texas Tech University, USA, International Center for Arid and Semiarid Land Studies, pp 249–282

    Google Scholar 

  • Dregne H, Kassas M, Rozanov B (1991) A new assessment of the world status of desertification. Desertification Control Bulletin 20:6–18

    Google Scholar 

  • Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J Appl Ecol 53:11–15

    Article  Google Scholar 

  • Edroma EL (1985) Effect of clipping on Themeda triandra and Brachiaria platynotan in Queen Elizabeth National Park, Uganda. Afr J Ecol 23:45–52

    Article  Google Scholar 

  • El-Keblawy AA (2003) Effects of protection from grazing on species diversity, abundance and productivity in two regions of Abu Dhabi, United Arab emirates. In: Alsharhen S, Wood WW, Goudie AS, Fowler AD, Aodellatif EM (eds) Desertification of the third millennium. A.A. Balkema Publishers, Lisse, The Netherlands, pp 217–226

    Chapter  Google Scholar 

  • Evans GC (1972) The quantitative analysis of plant growth. Univ Calif Press, Berkeley and Los Angeles

    Google Scholar 

  • Fannon AG, Fike JH, Greiner SP, Feldhake CM, Wahlberg MA (2019) Hair sheep performance in a mid-stage deciduous Appalachian silvopasture. Agrofor Syst 93:81–93

    Article  Google Scholar 

  • FAO (2000) Grassland world statistical data. FAO STAT 2000. Food and Agriculture Organization of United Nations, Rome. www.fao.org/uploads/media/grass_stats_1.pdf. Retrieved from 17 July 2019

  • FAO (2001) Pastoralism in the new millennium. Animal Production and health paper 150

    Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)–Managing systems at risk. Food and Agriculture Organization of United Nations, Rome

    Google Scholar 

  • Faye MD, Weber JC, Mounkoro B, Dakouo JM (2010) Contribution of parkland trees to village livelihood: a case study from Mali. Dev Pract 20:428–434

    Article  Google Scholar 

  • Faye MD, Weber JC, Abasse TA, Boureima M, Larwanou M, Bationo AB, Diallo BO, Sigue H, Dakouo JM, Samake O, Sonogo DD (2011) Farmers’ preferences for tree functions and species in the West African Sahel. For Tree Livelihoods 20:113–116

    Article  Google Scholar 

  • Fernandes ECM, Matos JC (1995) Agroforestry strategies for alleviating soil chemical constraints to food and fiber production in the Brazilian Amazon. In: Seidl PR, Gottlieb OR, Kapla MAC (eds) Chemistry of the Amazon: biodiversity, natural products, and environmental issues. American Chemical Society, Washington, DC, pp 34–50

    Chapter  Google Scholar 

  • Fernandes ECM, Biot Y, Castilla C, Canto AC, Matos JC, Garcia S, Perin R, Wanderli E (1997) The impact of selective logging and forest conversion for subsistence agriculture and pastures on terrestrial nutrient dynamics in the Amazon. Ciencia e Cultura: J Brazilian Assoc Adv Sci 49:34–47

    CAS  Google Scholar 

  • Fernandes ECM, Wandelli E, Perin R, Garcia S (2006) Restoring productivity to degraded pasture lands in the Amazon through agroforestry practices. In: Uphoff N, Ball AS, Fernendes E, Herren G, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC Press, pp 305–321

    Google Scholar 

  • Fill JM, Platt WJ, Welch SM, Waldron JL, Mousseau TA (2015) Updating models for restoration and management of fiery ecosystems. For Ecol Manag 356:54–63

    Article  Google Scholar 

  • Ford MM, Zamora DS, Current D, Magner J, Wyatt G, Walter WD, Vaughan S (2019) Impact of managed woodland grazing on forage quantity, quality and livestock performance: the potential for silvopasture in Central Minnesota, USA. Agrofor Syst 93:67–79

    Article  Google Scholar 

  • Franzel S, Coe R, Cooper P, Place F, Scherr SJ (2001) Assessing the adoption potential of agroforestry practices in sub-Saharan Africa. Agrofor Syst 69(1-2):37–62

    Article  Google Scholar 

  • Freeman J, Jose S (2009) The role of herbicide in savanna restoration: effects of shrub reduction treatments on the understory and overstory of a longleaf pine flatwoods. For Ecol Manag 257:978–986

    Article  Google Scholar 

  • Fynn RWS, Augustine DJ, Peel MJS, Garine-Wichatitsky M (2016) Strategic management of livestock to improve biodiversity conservation in African savannahs: a conceptual basis for wildlife–livestock coexistence. J Appl Ecol 53:388–397

    Article  Google Scholar 

  • Garrity DP, Akinnifesi FK, Ajoyi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayalo J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur 2(3):197–214

    Article  Google Scholar 

  • Geng Y, Hu G, Ranjitkar S, Wang Y, Bu D, Pei S, Ou X, Lu Y, Ma X, Xu J (2017) Prioritizing fodder species based on traditional knowledge: a case study of mithun (Bos frontalis) in Dulongjiang area, Yunnan Province, Southwest China. J Ethnobiol Ethnomed 13:24. https://doi.org/10.1186/s13002-017-0153-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh BN (2010) Vegetative barriers for erosion control in Western Himalayan region. Technology Brochure, CSWCRTI, Dehradun, p 8

    Google Scholar 

  • Gibson DJ (2009) Grasses and Grassland Ecology. Oxford University Press, Oxford, 305 pp

    Google Scholar 

  • Grace J, José JS, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400

    Google Scholar 

  • Grewal SS (1984) Studies on rainwater conservation for the establishment of an agroforestry system on sodic soil. Ph.D. Thesis, Kurukshetra University, Kurukshetra

    Google Scholar 

  • Hair D (1980) An assessment of forest and rangeland situation in the United States. U.S. Forest Service, USA, p 631

    Google Scholar 

  • Hecht S, Cockburn A (1989) The Fate of the forest. Verso, London

    Google Scholar 

  • Henderson BB, Gerber PJ, Hilinski TE, Falcucci A, Ojima DS, Salvatore M, Conant RT (2015) Greenhouse gas mitigation potential of the world’s grazing lands: modeling soil carbon and nitrogen fluxes of mitigation practices. Agric Ecosyst Environ 207:91–100

    Article  CAS  Google Scholar 

  • Hoesktra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Google Scholar 

  • Homewood K (2008) Ecology of African pastoral societies. James Currey, Oxford

    Google Scholar 

  • Honda EA, Durigan G (2016) Woody encroachment and its consequences on hydrological processes in the savannah. Philos Trans Roy Soc Lond Biol Sci 371:20150313. https://doi.org/10.1098/rstb.2015.0313\

    Article  Google Scholar 

  • Humphreys LR (1994) Tropical forages: their role in sustainable agriculture. Bookcraft (Bath) Ltd

    Google Scholar 

  • ICAR & NAAS (2010) Degraded and wastelands of India: status and spatial distribution. Indian Council of Agricultural Research and National Academy of Agricultural Sciences, New Delhi, India, p 158

    Google Scholar 

  • Ismail S, Rao NK, Dagar JC (2019) Identification, evaluation and domestication of alternative crops for saline environment. In: Dagar JC, Yadav RK, Sharma PC (eds) Research developments in saline agriculture. Springer Nature, Singapore, pp 505–536

    Chapter  Google Scholar 

  • Jacobs L (1991) Waste of the West. Public Land Grazing, Tuscon, Az, p 602

    Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Mo Bot Gard 86:590–643

    Article  Google Scholar 

  • Jaradat AA (2003) Halophytes for sustainable farming systems in the Middle East. In: Alsharhan AS, Wood WW, Goudie AS, Fowler A, Abdellatif EM (eds) Desertification in the third millennium. Swets & Zeitlinger Publishers, Lisse, pp 187–204

    Chapter  Google Scholar 

  • Jose S, Dollinger J (2019) Silvopasture: a sustainable livestock production system. Agrofor Syst 93:1–9

    Article  Google Scholar 

  • Jose S, Walter D, Mohan Kumar B (2019) Ecological considerations in sustainable silvopasture design and management. Agrofor Syst 93:217–229

    Google Scholar 

  • Joshi PK, Jha AK, Wani SP, Joshi L, Shiyani RL (2005) Comprehensive assessment of watershed management in agriculture: meta-analysis to assess impact of watershed program and people’s participation. Research Report 8. ICRISAT and Asia Development Bank, p 21

    Google Scholar 

  • Kaimowitz D (1996) Livestock and deforestation in Central America in the 1980s and 1990s: a policy perspective. CIFOR, Bogor

    Google Scholar 

  • Kamwenda GJ (2002) Ngitili agrosilvipastoral systems in the United Republic of Tanzania Unasylva 211: 46–50

    Google Scholar 

  • Keeley JE, Rundel PW (2005) Fire and the Miocene expansion of C4 grasslands. Ecol Lett 8:683–690

    Article  Google Scholar 

  • Kumar A (1988) Long-term forage yields of five tropical grasses on an extremely sodic soil and the resultant soil amelioration. Expl Agric 24:89–96

    Article  Google Scholar 

  • Kumar A, Joshi MC (1972) The effect of grazing on the structure and productivity of vegetation near Pilani, Rajasthan, India. J Ecol 60:665–675

    Article  Google Scholar 

  • Kumari C, Gupta SR, Dagar JC, Singh V, Kumar M (2018) Carbon sequestration and microbial biodiversity in saline irrigated agroforestry systems of semiarid hyperthermic comborthids regions of north-west India. J Soil Salinity Water Qual 10(2):133–148

    Google Scholar 

  • Kunst C, Navall M, Ledesma R, Silberman J, Anríquez A, Coria D, Bravo S, Gómez A, Albanesi A, Grasso D, Dominguez Nuñez J, González A, Tomsic P, Godoy J (2016) Silvopastoral systems in the Western Chaco Region, Argentina. In: Peri PL, Dube F, Varella A (eds) Advances in Agroforestry. Springer International Publishing, Switzerland, pp 1–8

    Google Scholar 

  • Kwon H-Y, Nkonya E, Johnson T, Graw V, Kato E, Kihiu E (2016) Global estimates of the impacts of grassland degradation on livestock productivity from 2001 to 2011. In: Nkonya E, Mirzabaev A, von Braun J (eds) Economics of land degradation and improvement – a global assessment for sustainable development. Springer, Cham, pp 197–214

    Chapter  Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116

    Article  PubMed  Google Scholar 

  • Le Houerou HN (1980) Browse in Africa– the current state of knowledge. ILCA, Addis Ababa, p 498

    Google Scholar 

  • Le Houerou HN (1987) Indigenous shrubs and trees in the silvopastoral systems of Africa. In: Stepler H, Nair R. (eds) Agroforestry: a decade of development. ICRAF

    Google Scholar 

  • Le Houerou HN (1989) The shrubs of Africa. In: CM MK (ed) The biology and utilization of shrubs. Academic Press, pp 119–143

    Google Scholar 

  • Leakey RRB, Weber JC, Page T, Corneliuus JP, Akinnifesi FK, Roshetko JM, Tchoundjeu Z, Jamnadass R (2012) Tree domestication in agroforestry: progress in the second decade. In: PKR N, Garrity D (eds) Agroforestry-the future of global land use, Advances in Agroforestry, vol 9. Springer, pp 145–174

    Google Scholar 

  • Lieth H, Whittaker R (1973) Primary productivity of the biosphere. Springer-Verlag, New York

    Google Scholar 

  • Lopez-Santiago JG, Casanova-Lugo F, Villanueva-Lopez G, Dıaz-Echeverrıa VF, Solorio-Sanchez FJ, Martınez-Zurimendi P, Aryal DR, Chay-Canul AJ (2019) Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacan, Mexico. Agrofor Syst 93:199–211

    Article  Google Scholar 

  • MA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. A Framework for Assessment. Island Press, Washington, DC

    Google Scholar 

  • Malik KA, Aslam Z, Naqvi M (1986) Kallar grass-a plant of saline soils. Nuclear Institute for Agriculture and Biology. Faisalabad, Pakistan

    Google Scholar 

  • Martínez J, Cajas YS, León JD, Osorio NW (2014) Silvopastoral systems enhance soil quality in grasslands of Colombia. Appl Environ Soil Sci 2014:359736. 8 pages. https://doi.org/10.1155/2014/359736

    Article  Google Scholar 

  • Mauricio RM, Ribeiro RS, Paciullo DSC, Cangussú MA, Murgueitio E, Chará J, Estrada MXF (2019) Silvopastoral systems in Latin America for biodiversity, environmental, and socioeconomic improvements. Agroecosystem Diversity:287–297. https://doi.org/10.1016/b978-0-12-811050-8.00018-2

  • Mcadam JH, Sibbald AR, Teklehaimanot Z, Eason WR (2007) Developing silvopastoral systems and their effects on diversity of fauna. Agrofor Syst 70:81–89

    Article  Google Scholar 

  • Mekuria W, Aynekulu E (2013) Exclosure land management for restoration of the soils in degraded communal grazing lands in northern Ethiopia. Land Degrad Dev 24:528e538

    Article  Google Scholar 

  • Mekuria W, Langan S, Noble A, Johnston R (2017) Soil restoration after seven years of exclosure management in northwestern Ethiopia. Land Degrad Dev 28(4):1287e1297

    Article  Google Scholar 

  • Mekuria W, Wondie M, Amare T, Wubet A, Feyisa T, Yitaferu B (2018) Restoration of degraded landscapes for ecosystem services in North-Western Ethiopia. Heliyon 4:e00764. https://doi.org/10.1016/j.heliyon.2018.e00764

    Article  PubMed  PubMed Central  Google Scholar 

  • Melesse A, Steingass H, Schollenberger M, Holstein J, Rodehutscord M (2019) Nutrient compositions and in vitro methane production profiles of leaves and whole pods of twelve tropical multipurpose tree species cultivated in Ethiopia. Agrofor Syst 93:135–147

    Article  Google Scholar 

  • Mendarte S, Gandariasbeitia M, Albizu I, Larregla S, Besga G (2019) Prediction of browse nutritive attributes in a Pinus radiata D. Don silvopastoral system based on visible-near infrared spectroscopy. Agrofor Syst 93:103–112

    Article  Google Scholar 

  • Misra R (1987) Ecology of grazing land of India. Sri P. M. Dabadghao Memorial Lecture. Range Management Society of India, IGFRI, Jhansi, pp 1–29

    Google Scholar 

  • Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois et Forêts des Tropiques 316(2):3–16

    Article  Google Scholar 

  • Moore G, Sanford P, Wiley T (2006) Perennial pastures for Western Australia. Bulletin 4690. Department of Agriculture and Food, Western Australia, Perth

    Google Scholar 

  • Morgan RPC, Mngomezulu D (2003) Threshold conditions for initiation of valley-side gullies in the Middle Veld of Swaziland. Catena 50:401–414

    Article  Google Scholar 

  • Mureithi SM, Verdoodt A, Gachene CKK, Jjoka JT, Wasonga VO, Neve SD, Meyerhoff E, Van Ranst E (2014) Impact of enclosure management on soil properties and microbial biomass in a restored semi-arid rangeland, Kenya. J Arid Land 6:561–570

    Article  Google Scholar 

  • Murgueitio E (2004) Silvopastoral systems in the neotropics. In: Mosquera-Losada MR, McAdam J, Rigueiro-Rodríguez A (eds) Silvopastoralism and sustainable management. Universidad de Santiago de Compostela, Lugo, Spain

    Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261:1654–1663

    Article  Google Scholar 

  • Murgueitio E, Flores M, Calle Z, Chará J, Barahona R, Molina CH, Uribe F (2015) Productividad en sistemas silvopastoriles intensivos en América Latina. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales. Funciones productivas, socioeconómicas y ambientales. Serie Técnica Informe Técnico 402, CATIE, Turrialba, Fundación CIPAV, Cali, pp 59–101

    Google Scholar 

  • Murgueitio E, Uribe F, Molina C, Molina E, Galindo W, Chará J, Flores M, Giraldo C, Cuartas C, Naranjo J, Solarte L, González J (2016) Establecimiento y manejo de sistemas silvopastoriles intensivos con leucaena. In: Murgueitio E, Galindo W, Chará J, Uribe F (eds) Editorial CIPAV, Cali, Colombia, 220p

    Google Scholar 

  • NAAS (2009) State of Indian agriculture. National Academy of Agricultural Sciences (NAAS), New Delhi, p 256

    Google Scholar 

  • Nerlich K, Graeff-Honninger S, Claupein W (2013) Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agrofor Syst 87:475–492

    Article  Google Scholar 

  • Nunes J, Siva G, Cerri CE, Bernoux M, Feigl BJ, Wruck FJ, Cerri CC (2010) Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Tillage Res 110:175–186

    Article  Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human–induced soil degradation, 2nd edn. Wageningen, ISRIC

    Google Scholar 

  • Olsson EG, Ouattara S (2013) Opportunities and challenges to capturing the multiple potential benefits of REDD+ in a traditional transnational savannah-woodland region in West Africa. Ambio 42:309–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Orefice J, Smith RG, Carroll J, Asbjornsen H, Howard T (2019) Forage productivity and profitability in newly-established open pasture, silvopasture, and thinned forest production systems. Agrofor Syst 93:51–65

    Article  Google Scholar 

  • Osborne CP (2008) Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? J Ecol 96:35–45

    PubMed  PubMed Central  Google Scholar 

  • Osborne CP, Charles DT, Stevens N, Bond WJ, Midgley G, Lehmann CER (2018) Human impacts in African savannas are mediated by plant functional traits. New Phytol. https://doi.org/10.1111/nph.15236

  • Pande H, Singh JS (1985) Influence of clipping and water stress on growth performance and nutrient value of four range grasses. Proc Indian Acad Sci (Plant Sci) 95:389–403

    Google Scholar 

  • Pandeya SC (1988) Status of Indian rangelands. Range Management Society if India, Jhansi, India, p 213

    Google Scholar 

  • Pang K, Van Sambeek JW, Lin C-H, Jose S, Garrett HE (2019a) Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agrofor Syst 93:11–24

    Article  Google Scholar 

  • Pang K, Van Sambeek JW, Navarrete-Tindall NE, LinC-H JS, Garrett HE (2019b) Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. II. Forage quality and its species-level plasticity. Agrofor Syst 93:25–38

    Article  Google Scholar 

  • Parandiyal AK, Kumar A, Prasad A, Singh KD (2006) Study of tree crop association under boundary plantation system in south eastern Rajasthan. Abs: national Symposium for Livelihood Security, Environmental Protection and Biofuel Production, NRC Agroforestry, Jhansi (U.P.), Dec. 16–18, 2006

    Google Scholar 

  • Parr CL, Lehmann CE, Bond WJ, Hoffmann WA, Andersen AN (2014) Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol Evol 29(4):205–213

    Article  PubMed  Google Scholar 

  • Parrotta JA, Turnbull JW, Jones N (1997) Introduction: catalyzing native forest regeneration on degraded tropical lands. For Ecol Manag 99:1–7

    Article  Google Scholar 

  • Pathak PS, Dagar JC (2015) Indian grasslands and their management. In: Ghosh PK, Mahante SK, Singh JB, Pathak PS (eds) Grasslands: a global resource perspective. Range management, India

    Google Scholar 

  • Pathak PS, Gupta SK, Singh P (1995) IGFRI Approaches: rehabilitation of degraded lands. Bulletin. IGFRI, Jhansi

    Google Scholar 

  • Pennington TD, Fernandes ECM (eds) (1998) The genus Inga: utilization. Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Peri L, Dube F, Varella AC (eds) (2016a) Silvopastoral systems in southern South America, Advances in agroforestry, vol, vol 12. Springer, Dordrecht

    Google Scholar 

  • Peri PL, Dube F, Varella AC (2016b) Silvopastoral systems in the subtropical and temperate zones of South America: an overview. In: Peri PL, Dube F, Varella A (eds) Silvopastoral systems in Southern South America, Chapter 1, Advances in Agroforestry. Springer International Publishing, Switzerland., pp 1–8

    Chapter  Google Scholar 

  • Pezzopane JRM, Bernardi ACC, Bosi C, Oliveira PPA, Marconato MH, de Faria PA, Esteves SN (2019) Forage productivity and nutritive value during pasture renovation in integrated systems. Agrofor Syst 93:39–49

    Article  Google Scholar 

  • Pinheiro FM, Nair PKR (2018) Silvopasture in the Caatinga biome of Brazil: a review of its ecology, management, and development opportunities. Forest Systems 27(1):eR01S. http://sci-hub.tw/10.5424/fs/2018271-12267

    Article  Google Scholar 

  • Prajapati MC, Tiwari AK, Nambiar KTN, Singh JP, Malhotra BM, Sharda VN (1989) Effect of goat grazing on vegetation, runoff and soil loss in a stabilized watershed vis-à-vis animal growth. Indian J Soil Conserv 17(1):9–16

    Google Scholar 

  • Prajapati MC, Nambiar KTN, Puri DN, Singh JP, Malhotra BM (1993) Fuel and fodder production in Yamuna ravines at Agra. Indian J Soil Cons 21(3):8–13

    Google Scholar 

  • Prasad RN, Singh KA (1994) Integrating land use management for eastern Himalayan agroecosystems. In: Singh P, Pathak PS, Roy MM (eds) Agroforestry system for sustainable land use. Oxford & IBH Publ Co., New Delhi, pp 228–236

    Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (2002) Amelioration of calcareous saline-sodic soils through phytoremediation and chemical strategies. Soil Use Manag 18:381–385

    Article  Google Scholar 

  • Qureshi RH, Aslam M, Rafiq M (1993) Expansion in the use of forage halophytes in Pakistan. In: Davidson N, Galloway R (eds) Productive use of saline land. ACIAR Proceedings No. 42, Australian Centre for International Agricultural Research, Canberra, Australia, pp 12–16

    Google Scholar 

  • Rai P (2012) Sylvipastoral system for livestock production: performance of small ruminants. Indian J of Agroforestry 14(1):23–28

    Google Scholar 

  • Rai P, Kanodia KC (1981) Effect of split application of nitrogen on the quantity and quality of Sehima-Heteropogon grasslands. Forage Res 7:83–85

    Google Scholar 

  • Rashid A, Khattak JK, Khan MZ, Iqbal MJ, Akbar F, Khan P (1993) Selection of halophytic forage shrubs for the Peshawar Valley, Pakistan. In: Davidson N, Galloway R (eds) Productive use of saline land. ACIAR proceedings No. 42, ACIAR, Canberra, Australia, pp 56–61

    Google Scholar 

  • Rawat, GS, Adhikari BS. (2015). Ecology and Management of Grassland Habitats in India, ENVIS Bulletin. Wildlife and Protected Areas. Vol. 17. Wildlife Institute of India, 240 pp

    Google Scholar 

  • Rhoades CC (1997) Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agrofor Syst 35:71–94

    Article  Google Scholar 

  • Rika IK, Nitish IM, Humphrogs LR (1981) Effects of stocking rates on cattle growth, pasture production and coconut yield in Bali. Tropical Grasslands 15:149–157

    Google Scholar 

  • Rivera J, Cuartas CA, Naranjo JF, Tafur O, Hurtado EA, Arenas FA, Chará J, Murgueitio E (2015) Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensive (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónicocolombiano. Livestock Research for Rural Development. Volume 27, Article #189. http://www.lrrd.org/lrrd27/10/rive27189.html

  • Rivera JE, Chará J, Barahona R (2019) CH4, CO2 and N2O emissions from grasslands and bovine excreta in two intensive tropical dairy production systems. Agrofor Syst 93(3):915–928

    Article  Google Scholar 

  • Ryan CM, Pritchard R, McNicol I, Owen M, Fisher JA, Lehmann C (2016) Ecosystem services from southern African woodlands and their future under global change. Philos Trans R Soc Lond Ser B Biol Sci 371:20150312. https://doi.org/10.1098/rstb.2015.0312

    Article  Google Scholar 

  • Sanchez PA, Woomer PL, Palm CA (1992) Agroforestry approaches or rehabilitating degraded lands after tropical deforestation. JIRCAS International Symposium Series 1:108–119

    Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544

    Article  Google Scholar 

  • Serrao EAS, Homma AKO (1993) Sustainable agriculture in the humid tropics – Brazil. In: sustainable agriculture and the environment in the humid tropics. National Academy Press, Washington, DC, USA, pp 265–351

    Google Scholar 

  • Serrao EA, Toledo JM (1990) The search for sustainability in Amazonian pastures. In: Anderson AB (ed) Alternatives to Deforestation: steps towards Sustainable Use of the Amazon Rain Forest. Columbia University Press, New York, pp 195–214

    Google Scholar 

  • Serrao EAS, Falesi IC, da Veiga JB, Neto JFT (1979) Productivity of cultivated pastures on low fertility soils in the Amazon of Brazil. In: Sanchez PA, Tergas LE (eds) Pasture production in acid soils of the tropics. CIAT Series 03EG–Centro Internacional de Agricultura Tropical, Colombia, pp 195–225

    Google Scholar 

  • Sharda VN, Venkateswarlu B (2007) Crop diversification and alternate land use systems in watershed management. In: best-bet options for integrated watershed management–Proceedings of the Comprehensive Assessment of Watershed Programs in India, July 25-27, 2007. ICRISAT, Patancheru, pp 111–128

    Google Scholar 

  • Sharda VN, Juyal GP, Naik BS (2008) Watershed development in India: status and perspective. Allied Printers, Dehradun, India, p 219

    Google Scholar 

  • Sharma BR, Karanne KD (1988) Present status and management strategies for increasing biomass production in North-Western Himalayan rangelands. In: Singh P, Pathak PS (eds) Rangeland Resource and Management. RMSI. IGFRI, Jhansi, India, pp 138–147

    Google Scholar 

  • Sharma AK, Dagar JC, Pal RN (1991) Comparative yield performance and water use efficiency of eleven exotic fodder grasses in the humid tropics. Trop Ecol 32(2):245–254

    Google Scholar 

  • Sharma AK, Dagar JC, Pal RN (1992) Performance of perennial fodder grasses under continuous growth in tropical islands. Trop Sci 32:383–388

    Google Scholar 

  • Sidorchuk A, Grigorev V (1998) Soil erosion on the Yamal Peninsula (Russian Arctic) due to gas field exploitation. Adv Geoecol 31:805–811

    Google Scholar 

  • Siebert F, Eckhardt HC, Siebert SJ (2010) The vegetation and floristics of the Letaba exclosures, Kruger National Park, South Africa. In Koedoe – African Protected Area Conservation and Science 52(1):12. https://doi.org/10.4102/koedoe.v52i1.777

  • Sierra J, Nygren P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol Biochem 38:1893–1903

    Article  CAS  Google Scholar 

  • Sims PL, Singh JS (1978) The structure and function of ten western North American grasslands. III. Net primary production, turnover, and efficiencies of energy capture and water use. J Ecol 66:573–597

    Article  Google Scholar 

  • Singh G, Dagar JC (2005) Greening sodic lands: bichhian model. Technical Bulletin No.2/2005 CSSRI. Karnal, India, p 51

    Google Scholar 

  • Singh JS, Gupta SR (1992) Grasslands of Southern Asia. In: Coupland RT (ed) Ecosystems of the world: natural grasslands: eastern Hemisphere and resume, vol 8B. Elsevier Science Publishers, Amsterdam, the Netherlands, pp 83–123

    Google Scholar 

  • Singh VP, Dagar JC, Uppadhyaya SD (1979) Analysis of structure, production dynamics and successional trends of tropical grassland communities of Ujjain (India). Sylvatrop-Philip For Res J 4:231–254

    Google Scholar 

  • Sivakumar M, Stefanski R (2007) Climate and land degradation – an overview. In: Sivakumar M, Ndiangui N (eds) Climate and land degradation. Springer, Berlin, pp 105–133

    Chapter  Google Scholar 

  • Smithers RHN (1983) The mammals of the Southern African sub-region. University of Pretoria, Pretoria

    Google Scholar 

  • Somarriba E, Carreño-Rocabado G, Amores F, Caicedo W, Gillés S, Cerda R, Ordóñez J (2018) Trees of farms for livelihoods, conservation of biodiversity and carbón storage. Evidence from Nicaragua on this Invisible resource. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty. Advances in Agroforestry 12. Springer International Publishing, Switzerland

    Google Scholar 

  • Soni ML, Subbulakshmi V, Yadava ND, Tewari JC, Dagar JC (2016) Silvopastoral agroforestry systems: lifeline for dry regions. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 245–305

    Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232

    Article  CAS  PubMed  Google Scholar 

  • Stromberg CAE (2004) Using phytolith assemblages to reconstructing the origin and spread of grass-dominated habitats in the Great Plains during the late Eocene to early Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 207:239–275

    Article  Google Scholar 

  • Suttie JM, Reynolds SG, Batello C (eds) (2005) Grasslands of the world, Plant Production and Protection Series No, vol 4. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Tapia-Coral SC, Luizao FJ, Wandelli EV, Fernandes ECM (2005) Carbon and nutrient stocks in the litter layer of agroforestry systems in central Amazonia, Brazil. Agrofor Syst 65:33–42

    Article  Google Scholar 

  • Tewari JC, Bohra MD, Harsh LN (1999) Structure and production function of traditional extensive agroforestry systems and scope of agroforestry in Thar desert. Indian J Agrofor 1(1):81–94

    Google Scholar 

  • Tewari JC, Moola-Ram RMM, Dagar JC (2014) livelihood improvements and climate change adaptations through agroforestry in hot arid environments. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry Systems in India: livelihood Security & Ecosystem Services, Advances in Agroforestry, vol, vol 10, pp 155–184

    Chapter  Google Scholar 

  • Tomar OS, Minhas PS, Sharma VK, Gupta RK (2003a) Response of nine forage grasses to saline irrigation and its schedules in a semi-arid climate of north-west India. J Arid Environ 55:533–544

    Article  Google Scholar 

  • Tomar OS, Minhas PS, Sharma VK, Singh YP, Gupta RK (2003b) Performance of 31 tree species and soil condition in a plantation established with saline irrigation. For Ecol Manag 177:333–346

    Article  Google Scholar 

  • Trivedi BK (2001) Ecological management of Iseilema grassland for sustainable production. Range Mgmt Agroforestry 22(1):6–19

    Google Scholar 

  • Uhl C, Nepstad D, Buschbacher R, Clark K, Kauffman B, Subler S (1990) Studies of ecosystem response to natural and anthropogenic disturbances provide guidelines for designing sustainable land-use systems in Amazonia. In: Anderson AB (ed) Alternatives to deforestation: steps toward sustainable use of the amazon rain forest. Columbia University Press, New York, p 24

    Google Scholar 

  • US/IBP (1973) Grassland Biome. Analysis of structure, function, and utilization of grassland ecosystems: Vol I and II. A Progress Report. Colorado State Univ, Fort Collins, Colorado, pp 305–316

    Google Scholar 

  • Van Dyne GM, Smith FM, Czaplewski RL, Woodmansee RG (1978) Analysis and syntheses of grassland ecosystem dynamics. In: Singh JS, Gopal B (eds) Glimpses of ecology. International Scientific Publications, Jaipur, India, pp 1–79

    Google Scholar 

  • Veldman JW (2016) Clarifying the confusion: old-growth savannahs and tropical ecosystem degradation. Philos Trans R Soc Lond Ser B Biol Sci 371:20150306. https://doi.org/10.1098/rstb.2015.0306

    Article  Google Scholar 

  • Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S, Mahy G, Negreiros D, Overbeck GE, Veldman RG, Zaloumis NP, Putz FE, Bond WJ (2015) Toward an old-growth concept for grasslands, savannas, and woodlands. Front Ecol Environ 13:154–162

    Article  Google Scholar 

  • Verdoodt A, Mureithi SM, Ye L, Ranst EV (2009) Chronosequence analysis of two enclosure management strategies in degraded rangeland of semi-arid Kenya. Agric Ecosyst Environ 129:332–339

    Article  Google Scholar 

  • Villanueva-Partida CR, Casanova-Lugo F, Gonzalez-Valdivia NA, Villanueva-Lopez G, Oros-Ortega I, Cetzal-Ix W, Basu SK (2019) Traditional uses of dispersed trees in the pastures of the mountainous region of Tobasco Mexico. Agrofor Syst 93(2):383–394

    Article  Google Scholar 

  • Walter H (1973) Vegetation of the earth– in Relation to Climate and the Eco-physiological Condition. Springer-Verlag, New York, p 237

    Google Scholar 

  • White R, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems: grassland ecosystems. World Resources Institute, Washington, DC

    Google Scholar 

  • Wilkerson ML, Roche LM, Young TP (2013) Indirect effects of domestic and wild herbivores on butterflies in an African savanna. Ecol Evol 3:3672–3682

    Article  PubMed  PubMed Central  Google Scholar 

  • WRI (1990) World resources 1991. World Resource Institute. Oxford Univ. Press, New York, p 383

    Google Scholar 

  • WRI (2000) World resources 2000-2001. World Resource Institute. Oxford Univ. Press, New York, p 389

    Google Scholar 

  • WRI (2001) World resources 2001-02. World Resource Institute. Oxford Univ. Press, New York

    Google Scholar 

  • Yadava PS, Singh JS (1977) Grassland vegetation: its structure, function, utilization and management. Today and Tomorrow’s Printers and Publishers, New Delhi, p 132

    Google Scholar 

  • Young A (1997) Agroforestry for soil management, 2nd edn. CAB Internationals, Wallingford, UK, p 320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dagar, J.C., Gupta, S.R. (2020). Silvopasture Options for Enhanced Biological Productivity of Degraded Pasture/Grazing Lands: An Overview. In: Dagar, J.C., Gupta, S.R., Teketay, D. (eds) Agroforestry for Degraded Landscapes. Springer, Singapore. https://doi.org/10.1007/978-981-15-6807-7_6

Download citation

Publish with us

Policies and ethics