Skip to main content

Techniques and Clinical Applications of Phase-Contrast MRI in CHD

  • Chapter
  • First Online:
CT and MRI in Congenital Heart Diseases
  • 682 Accesses

Abstract

Phase-contrast magnetic resonance imaging (PC-MRI) also known as velocity-encoded cine magnetic resonance imaging (VENC-MRI) is the primary technique for blood flow measurements, qualitative and quantitative information on both flow volume and flow velocity in the great vessels. In this chapter, we discuss the basics of phase-contrast MRI techniques, describe the pitfalls and limitations associated with phase-contrast imaging, provide guidelines for post processing and data analysis, and present specific clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Donnell M. NMR blood flow using multiecho, phase contrast sequences. Med Phys. 1985;12:59–64.

    Article  PubMed  Google Scholar 

  2. Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr. 1986;10:715–22.

    Article  CAS  PubMed  Google Scholar 

  3. Nayak KS, Nielsen J-F, Bernstein MA, et al. Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson. 2015;17:71. https://doi.org/10.1186/s12968-015-0172-7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Varaprasathan GA, Araoz PA, Higgins CB, Reddy GP. Quantification of flow dynamics in congenital heart disease: applications of velocity-encoded cine MR imaging. Radiographics. 2002;22:895–905.

    Article  PubMed  Google Scholar 

  5. Pelc NJ. Flow quantification and analysis methods. Magn Reson Imaging Clin N Am. 1995;3:413–24.

    Article  CAS  PubMed  Google Scholar 

  6. Lee VS, Spritzer CE, Carroll BA, et al. Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. AJR. 1997;169:1125–31.

    Article  CAS  PubMed  Google Scholar 

  7. Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22:651–71.

    Article  PubMed  Google Scholar 

  8. Vasanawala SS, Hanneman K, Alley MT, Hsiao A. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging. 2015;42:870–86.

    Article  PubMed  Google Scholar 

  9. Greil G, Geva T, Maier SE, Powell AJ. Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. J Magn Reson Imaging. 2002;15:47–54.

    Article  PubMed  Google Scholar 

  10. Ley S, Ley-Zaporozhan J, Kreitner K-F, Iliyushenko S, Puderbach M, Hosch W, et al. MR flow measurements for assessment of the pulmonary, systemic and broncho systemic circulation: impact of different ECG gating methods and breathing schema. Eur J Radiol. 2007;61:124–9.

    Article  PubMed  Google Scholar 

  11. Sakuma H, Kawada N, Kubo H, Nishide Y, Takano K, Kato N, Takeda K. Effect of breath holding on blood flow measurement using fast velocity encoded cine MRI. Magn Reson Med. 2001;45:346–8.

    Article  CAS  PubMed  Google Scholar 

  12. Johansson B, Babu-Narayan SV, Kilner PJ. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping. J Cardiovasc Magn Reson. 2009;11:1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ley S, Fink C, Puderbach M, Zaporozhan J, Plathow C, Eichinger M, Hosch W, Kreitner KF, Kauczor HU. MRI Measurement of the hemodynamics of the pulmonary and systemic arterial circulation: influence of breathing maneuvers. AJR Am J Roentgenol. 2006;187:439–44.

    Article  PubMed  Google Scholar 

  14. Tang C, Blatter DD, Parker DL. Accuracy of phase-contrast flow measurements in the presence of partial volume effects. J Magn Reson Imaging. 1993;3:377–85.

    Article  CAS  PubMed  Google Scholar 

  15. Kilner PJ, Gatehouse PD, Firmin DN. Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson. 2007;9:723–8.

    Article  PubMed  Google Scholar 

  16. Miller TA, Landes AB, Moran AM. Improved accuracy in flow mapping of congenital heart disease using stationary phantom technique. J Cardiovasc Magn Reson. 2009;11:52.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kozerke S, Botnar R, Oyre S, Scheidegger MB, Pedersen EM, Boesiger P. Automatic vessel segmentation using active contours in cine phase contrast flow measurements. J Magn Reson Imaging. 1999;10:41–51.

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton CA, Moran PR, Santago P 2nd, Rajala SA. Effects of intravoxel velocity distributions on the accuracy of the phase mapping method in phase-contrast MR angiography. J Magn Reson Imaging. 1994;4:752–5.

    Article  CAS  PubMed  Google Scholar 

  19. Ghiglia DC, Pritt MD. Two-dimensional phase unwrapping: theory, algorithms, and software. New York: Wiley; 1998.

    Google Scholar 

  20. Yang GZ, Kilner PJ, Wood NB, Underwood SR, Firmin DN. Computation of low pressure fields from magnetic resonance velocity mapping. Magn Reson Med. 1996;36:520–6.

    Article  CAS  PubMed  Google Scholar 

  21. Xiang QS. Temporal phase unwrapping for CINE velocity imaging. J Magn Reson Imaging. 1995;5:529–34.

    Article  CAS  PubMed  Google Scholar 

  22. Firmin DN, Nayler GL, Kilner PJ, et al. The applications of phase shifts in NMR for flow measurements. Magn Reson Med. 1990;14:230–41.

    Article  CAS  PubMed  Google Scholar 

  23. Kozerke S, Schwitter J, Pedersen EM, Boesiger P. Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging. 2001;14:106–12.

    Article  CAS  PubMed  Google Scholar 

  24. Kayser HW, Stoel BC, van der Wall EE, van der Geest RJ, de Roos A. MR velocity mapping of tricuspid flow: correction for through-plane motion. J Magn Reson Imaging. 1997;7:669–73.

    Article  CAS  PubMed  Google Scholar 

  25. Hundley WG, Lange RA, Clarke GD, et al. Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation. 1996;93:1502–8.

    Article  CAS  PubMed  Google Scholar 

  26. Wolf RL, Ehman RL, Riederer SJ, Rossman PJ. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med. 1993;30:82–91.

    Article  CAS  PubMed  Google Scholar 

  27. Gatehouse PD, Rolf MP, Graves MJ, Hofman MB, Totman J, Werner B, Quest RA, Liu Y, von Spiczak J, Dieringer M, et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson. 2010;12:5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Holland BJ, Printz BF, Lai WW. Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:11.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chernobelsky A, Shubayev O, Comeau CR, Wolff SD. Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007;9:681–5.

    Article  PubMed  Google Scholar 

  30. Lankhaar JW, Hofman MB, Marcus JT, Zwanenburg JJ, Faes TJ, Vonk-Noordegraaf A. Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging. 2005;22:73–9.

    Article  PubMed  Google Scholar 

  31. Silverman JM, Raissi S, Tyszka JM, Trento A, Herfkens RJ. Phase-contrast cine MR angiography detection of thoracic aortic dissection. Int J Card Imaging. 2000;16:461–70.

    Article  CAS  PubMed  Google Scholar 

  32. Kunz RP, Oberholzer K, Kuroczynski W, et al. Assessment of chronic aortic dissection: contribution of different ECG-gated breath-hold MRI techniques. AJR. 2004;182:1319–26.

    Article  PubMed  Google Scholar 

  33. Nezafat R, Kellman P, Derbyshire JA, McVeigh ER. Real-time blood flow imaging using autocalibrated spiral sensitivity encoding. Magn Reson Med. 2005;54:1557–61.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nayak KS, Pauly JM, Kerr AB, Hu BS, Nishimura DG. Real-time color flow MRI. Magn Reson Med. 2000;43:251–8.157.

    Article  CAS  PubMed  Google Scholar 

  35. Caruthers SD, Lin SJ, Brown P, Watkins MP, Williams TA, Lehr KA, et al. Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis: comparison with echocardiography. Circulation. 2003;108:2236–43.

    Article  PubMed  Google Scholar 

  36. Søndergaard L, Hildebrandt P, Lindvig K, Thomsen C, Ståhlberg F, Kassis E, et al. Valve area and cardiac output in aortic stenosis: quantification by magnetic resonance velocity mapping. Am Heart J. 1993;126:1156–64.

    Article  PubMed  Google Scholar 

  37. Lin SJ, Brown PA, Watkins MP, Williams TA, Lehr KA, Liu W, et al. Quantification of stenotic mitral valve area with magnetic resonance imaging and comparison with Doppler ultrasound. J Am Coll Cardiol. 2004;44:133–7.

    Article  PubMed  Google Scholar 

  38. Davos D, Kilner PJ. Calculations of cardiovascular shunts and regurgitation using magnetic resonance ventricular volume and aortic and pulmonary flow measurements. Eur Radiol. 2010;20:410–21. https://doi.org/10.1007/s00330-009-1568-2.

    Article  Google Scholar 

  39. Li W, Davlouros PA, Kilner PJ, Pennell DJ, Gibson D, Henein MY, et al. Doppler-echocardiographic assessment of pulmonary regurgitation in adults with repaired tetralogy of Fallot: comparison with cardiovascular magnetic resonance imaging. Am Heart J. 2004;147:165–72.

    Article  PubMed  Google Scholar 

  40. Chatzimavroudis GP, Walker PG, Oshinski JN, Franch RH, Pettigrew RI, Yoganathan AP. Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Magn Reson Med. 1997;37:545–51.

    Article  CAS  PubMed  Google Scholar 

  41. Sebastian K, Juerg Schwitter E. Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging. 2001;14:106–12.

    Article  Google Scholar 

  42. Hundley WG, Li HF, Willard JE, Landau C, Lange RA, Meshack BM, et al. Magnetic resonance imaging assessment of the severity of mitral regurgitation. Comparison with invasive techniques. Circulation. 1995;92:1151–8.

    Article  CAS  PubMed  Google Scholar 

  43. Hundley WG, Li HF, Lange RA, Pfeifer DP, Meshack BM, Willard JE, et al. Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques. Circulation. 1995;91:2955–60.

    Article  CAS  PubMed  Google Scholar 

  44. Thomson LEJ, Crowley AL, Heitner JF, Cawley PJ, Weinsaft JW, Kim HW, et al. Direct en face imaging of secundum atrial septal defects by velocity-encoded cardiovascular magnetic resonance in patients evaluated for possible transcatheter closure. Circ Cardiovasc Imaging. 2008;1:31–40.

    Article  PubMed  Google Scholar 

  45. Steffens JC, Bourne MW, Sakuma H, et al. Quantitation of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation. 1994;90:937–43.

    Article  CAS  PubMed  Google Scholar 

  46. Roman KS, Kellenberger CJ, Farooq S, MacGowan CK, Gilday DL, Yoo SJ. Comparative imaging of differential pulmonary blood flow in patients with congenital heart disease: magnetic resonance imaging versus lung perfusion scintigraphy. Pediatr Radiol. 2005;35:295–301.

    Article  PubMed  Google Scholar 

  47. Fratz S, Hess J, Schwaiger M, Martinoff S, Stern HC. More accurate quantification of pulmonary blood flow by magnetic resonance imaging than by lung perfusion scintigraphy in patients with fontan circulation. Circulation. 2002;106:1510–3.

    Article  PubMed  Google Scholar 

  48. Rathi VK, Doyle M, Yamrozik J, et al. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson. 2008;10:36.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Paelinck BP, de Roos A, Bax JJ, et al. Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue Doppler imaging and invasive measurement. J Am Coll Cardiol. 2005;45(7):1109–16.

    Article  PubMed  Google Scholar 

  50. Mohiaddin RH, Gatehouse PD, Henien M, Firmin DN. Cine MR Fourier velocimetry of blood flow through cardiac valves: comparison with Doppler echocardiography. J Magn Reson Imaging. 1997;7(4):657–63.

    Article  CAS  PubMed  Google Scholar 

  51. Sanz J, Kuschnir P, Rius T, Salguero R, Sulica R, Einstein AJ, Dellegrottaglie S, Fuster V, Rajagopalan S, Poon M. Pulmonary Arterial Hypertension: Noninvasive Detection with Phase-Contrast MR Imaging. Radiology. 2007;243:70–9.

    Article  PubMed  Google Scholar 

  52. Kondo C, Caputo GR, Masui T, et al. Pulmonary hypertension: pulmonary flow quantification and flow profile analysis with velocity-encoded cine MR imaging. Radiology. 1992;183:751–8.

    Article  CAS  PubMed  Google Scholar 

  53. Nagendran J, Michelakis E. MRI: one-stop shop for the comprehensive assessment of pulmonary arterial hypertension? Chest. 2007;132:2–5.

    Article  PubMed  Google Scholar 

  54. Hjortdal VE, Emmertsen K, Stenbog E, Frund T, Schmidt MR, Kromann O, Sorensen K, Pedersen EM. Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation. 2003;108:1227–31.

    Article  CAS  PubMed  Google Scholar 

  55. Korperich H, Gieseke J, Barth P, Hoogeveen R, Esdorn H, Peterschroder A, Meyer H, Beerbaum P. Flow volume and shunt quantification in pediatric congenital heart disease by real-time magnetic resonance velocity mapping: a validation study. Circulation. 2004;109:1987–93.

    Article  PubMed  Google Scholar 

  56. Nagel E, Thouet T, Klein C, Schalla S, Bornstedt A, Schnackenburg B, et al. Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation. 2003;107:1738–43.

    Article  PubMed  Google Scholar 

  57. Hundley WG, Hamilton CA, Clarke GD, Hillis LD, Herrington DM, Lange RA, et al. Visualization and functional assessment of proximal and middle left anterior descending coronary stenoses in humans with magnetic resonance imaging. Circulation. 1999;99:3248–54.

    Article  CAS  PubMed  Google Scholar 

  58. Wigström L, Sjöqvist L, Wranne B. Temporally resolved 3D phase-contrast imaging. Magn Reson Med. 1996;36:800–3.

    Article  PubMed  Google Scholar 

  59. Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Whitehead KK, Sundareswaran KS, Parks WJ, Harris MA, Yoganathan AP, Fogel MA. Blood flow distribution in a large series of patients having the Fontan operation: a cardiac magnetic resonance velocity mapping study. J Thorac Cardiovasc Surg. 2009;138:96–102.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiah Rajeshkannan .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Video 20.1

CMR in a 31-year-old female. A case of aortopulmonary window, severe PAH with preserved biventricular function to assess operability (PDF 562 kb)

Cor cine

MRA

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajeshkannan, R. (2021). Techniques and Clinical Applications of Phase-Contrast MRI in CHD. In: Rajeshkannan, R., Raj, V., Viswamitra, S. (eds) CT and MRI in Congenital Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-6755-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6755-1_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6754-4

  • Online ISBN: 978-981-15-6755-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics