Skip to main content

RNA- and DNA-Based Identification of Body Fluids

  • Chapter
  • First Online:
Forensic DNA Typing: Principles, Applications and Advancements

Abstract

The most common form of evidence to forensic investigators is the body fluids collected at crime scenes. They ascertain the suspect or victim, they provide valuable DNA evidences and can play a vital role in acquit an innocent individual. The determination of a specific bodily fluid is predominantly the initial step as the body fluid composition is very relevant to the further investigation process. The ability to identify and report an unexplained stain at the scene of crime without waiting for the laboratory results is another very important phase in the forensic body fluids analysis. Many forms of detection methods for body fluids have been known for over a century, such as alternative light source, immunological tests, spectroscopic techniques, chemical methods, catalytic tests, and microscopic methods. Although these modern forms of detection of body fluids are often definitive, these are done at a time with only one body fluid. Currently the usage of molecular genetic based approaches using DNA methylation detection or RNA-based profiling methods has recently conquered to replace the traditional body fluids identification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akutsu T, Watanabe K, Sakurada K (2012a) Specificity, sensitivity, and operability of RSID™-urine for forensic identification of urine: comparison with ELISA for Tamm-Horsfall protein. J Forensic Sci 57:1570–1573

    Article  PubMed  Google Scholar 

  • Akutsu T, Motani H, Watanabe K, Iwase H, Sakurada K (2012b) Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid. Legal Med 14:160–162

    Article  CAS  PubMed  Google Scholar 

  • Alvarez M, Juusola J, Ballantyne J (2004) An mRNA and DNA co-isolation method for forensic casework samples. Anal Biochem 335:289–298

    Article  CAS  PubMed  Google Scholar 

  • Anderson SE, Hobbs GR, Bishop CP (2010) Multivariate analysis for estimating the age of a bloodstain. J Forensic Sci 56:186–193

    Article  PubMed  CAS  Google Scholar 

  • Auvdel ML (1986) Amylase levels in semen and saliva stains. J Forensic Sci 31:426–431

    Article  CAS  PubMed  Google Scholar 

  • Baker DJ, Grimes EA, Hopwood AJ (2011) D-dimer assays for the identification of menstrual blood. Forensic Sci Int 212:210–214

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Kraus A, Patzelt D (1999) Detection of epithelial cells in dried bloodstains by reverse transcriptase polymerase chain reaction. J Forensic Sci 44:1232–1236

    CAS  PubMed  Google Scholar 

  • Bauer M, Gramlich I, Polzin S, Patzelt D (2003) Quantification of mRNA degradation as possible indicator of postmortem interval – a pilot study. Legal Med 5:220–227

    Article  CAS  PubMed  Google Scholar 

  • Boward ES, Wilson SL (2013) A comparison of ABAcard® p30 and RSID™-semen test kits for forensic semen identification. J Forensic Legal Med 20:1126–1130

    Article  Google Scholar 

  • Brumbaugh CD, Kim HJ, Giovacchini M, Pourmand N (2011) NanoStriDE: normalization and differential expression analysis of NanoString nCounter data. BMC Bioinformatics 12:479

    Article  PubMed  PubMed Central  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real time RT PCR – a perspective. J Mol Endocrinol 34:597–601

    Article  CAS  PubMed  Google Scholar 

  • Byun HM, Siegmund KD, Pan F, Weisenberger DJ, Kanel G, Laird PW, Yang AS (2009) Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum Mol Genet 18:4808–4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey DG, Price J (2010) The sensitivity and specificity of the RSID™ saliva kit for the detection of human salivary amylase in the forensic science laboratory, Dublin, Ireland. Forensic Sci Int 194:67–71

    Article  CAS  PubMed  Google Scholar 

  • Cecchi R (2010) Estimating wound age: looking into the future. Int J Legal Med 124:523–536

    Article  PubMed  Google Scholar 

  • Cossu C, Germann U, Kratzer A, Baer W, Haas C (2009) How specific are the vaginal secretion mRNA markers HBD1 and MUC4. Forensic Sci Int Genet Suppl Ser 2:536–537

    Article  Google Scholar 

  • Cox M (1991) A study of the sensitivity and specificity of four presumptive tests for blood. J Forensic Sci 36:1503–1511

    Article  CAS  PubMed  Google Scholar 

  • Danaher P, White RL, Hanson EK, Ballantyne J (2015) Facile semi-automated forensic body fluid identification by multiplex solution hybridization of NanoString® barcode probes to specific mRNA targets. Forensic Sci Int Genet 14:18–30

    Article  CAS  PubMed  Google Scholar 

  • Donfack J, Wiley A (2015) Mass spectrometry based cDNA profiling as a potential tool for body fluid identification. Forensic Sci Int Genet 16:112–120

    Article  CAS  PubMed  Google Scholar 

  • Fleming RI, Harbison SA (2010a) The development of an mRNA multiplex RT-PCR assay for the definitive identification of body fluids. Forensic Sci Int Genet 4:244–256

    Article  CAS  PubMed  Google Scholar 

  • Fleming RI, Harbison SA (2010b) The use of bacteria for the identification of vaginal secretions. Forensic Sci Int Genet 4:311–315

    Article  CAS  PubMed  Google Scholar 

  • Fleming RI, Harbison SA, Lin MH (2013) New RNA methods for the identification of body fluids and cell types. Forensic Sci Int Genet Suppl Ser 4:e87–e88

    Article  Google Scholar 

  • Fox A, Gittos M, Harbison SA, Fleming R, Wivell R (2014) Exploring the recovery and detection of messenger RNA and DNA from enhanced fingermarks in blood. Sci Justice 54:192–198

    Article  CAS  PubMed  Google Scholar 

  • Frumkin D, Wasserstrom A, Budowle B, Davidson A (2011) DNA methylation-based forensic tissue identification. Forensic Sci Int Genet 5:517–524

    Article  CAS  PubMed  Google Scholar 

  • Gaensslen RE (1983) Sourcebook in forensic serology, immunology and biochemistry. US Department of Justice, Washington, DC

    Google Scholar 

  • Giampaoli S, Alessandrini F, Berti A et al (2014) Forensic interlaboratory exercise of the For FLUID kit for vaginal fluids identification. J Forensic Legal Med 21:60–63

    Article  Google Scholar 

  • Grabmuller M, Madea B, Courts C (2015) Comparative evaluation of different extraction and quantification methods for forensic RNA analysis. Forensic Sci Int Genet 16:195–202

    Article  PubMed  CAS  Google Scholar 

  • Graves HCB (1995) Non prostatic sources of protein-specific antigen: a steroid hormone dependent phenomenon? Clin Chem 41:7–9

    Article  CAS  PubMed  Google Scholar 

  • Gray D, Frascione N, Daniel B (2012) Development of an immunoassay for the differentiation of menstrual blood from peripheral blood. Forensic Sci Int 220:12–18

    Article  CAS  PubMed  Google Scholar 

  • Haas C, Klesser B, Maake C, Bar W, Kratzer A (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and real time PCR. Forensic Sci Int Genet 3:80–88

    Article  CAS  PubMed  Google Scholar 

  • Haas C, Hanson E, Kratzer A, Bar W, Ballantyne J (2011) Selection of highly specific and sensitive mRNA biomarkers for the identification of blood. Forensic Sci Int Genet 5:449–458

    Article  CAS  PubMed  Google Scholar 

  • Haas C, Hanson E, Anjos MJ et al (2014) RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci Int Genet 8:203–212

    Article  CAS  PubMed  Google Scholar 

  • Haas C, Hanson E, Banemann R et al (2015) RNA/DNA co-analysis from human skin and contact traces – results of a sixth collaborative EDNAP exercise. Forensic Sci Int Genet 16:139–147

    Article  CAS  PubMed  Google Scholar 

  • Hanson EK, Ballantyne J (2013a) Multiplex high resolution melt (HRM) messenger RNA profiling analyses for body fluid identification. Forensic Sci Int Genet Suppl Ser 4:e125–e126

    Article  Google Scholar 

  • Hanson EK, Ballantyne J (2013b) Highly specific mRNA biomarkers for the identification of vaginal secretions in sexual assault investigations. Sci Justice 53:14–22

    Article  CAS  PubMed  Google Scholar 

  • Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387:303–314

    Article  CAS  PubMed  Google Scholar 

  • Hanson E, Haas C, Jucker R, Ballantyne J (2012) Specific and sensitive mRNA biomarkers for the identification of skin in “tough” DNA evidence. Forensic Sci Int Genet 6:548–558

    Article  CAS  PubMed  Google Scholar 

  • Harteveld J, Lindenbergh A, Sijen T (2013) RNA cell typing and DNA profiling of mixed samples: can cell types and donors be associated? Sci Justice 53:261–269

    Article  CAS  PubMed  Google Scholar 

  • Holtkoetter H, Dierig L, Schuerenkamp M, Sibbing U, Pfeiffer H, Vennemann M (2015) Validation of an immunochromatographic D-dimer test to presumptively identify menstrual fluid in forensic exhibits. Int J Legal Med 129:37–41

    Article  Google Scholar 

  • Huang CT, Chen ML, Huang LL, Mao IF (2002) Uric acid and urea in human sweat. Chin J Phys 45:109–115

    CAS  Google Scholar 

  • Jakubowska J, Maciejewska A, Pawlowski R, Bielawski KP (2013) mRNA profiling for vaginal fluid and menstrual blood identification. Forensic Sci Int Genet 7:272–278

    Article  CAS  PubMed  Google Scholar 

  • Johnston S, Newman J, Frappier R (2003) Validation study of the Abacus Diagnostics ABAcard® Hematrace® membrane test for the forensic identification of human blood. Can Soc Forensic Sci J 36:173–183

    Article  CAS  Google Scholar 

  • Jones EL Jr, Leon JA (2004) Lugol’s test re-examined again: buccal cells. J Forensic Sci 49:64–67

    PubMed  Google Scholar 

  • Jost D, Nowojewski A, Levine E (2011) Small RNA biology is systems biology. BMB Rep 44:11–21

    Article  CAS  PubMed  Google Scholar 

  • Juusola J, Ballantyne J (2005) Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int 152:1–12

    Article  CAS  PubMed  Google Scholar 

  • Juusola J, Ballantyne J (2007) mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J Forensic Sci 52:1252–1262

    CAS  PubMed  Google Scholar 

  • Keating SM, Higgs DF (1994) The detection of amylase on swabs from sexual assault cases. J Forensic Sci Soc 34:89–93

    Article  CAS  PubMed  Google Scholar 

  • Kind SS (1957) The use of the acid phosphatase test in searching for seminal stains. J Crim Law Criminol Police Sci 47:597–600

    Article  CAS  Google Scholar 

  • Kipps AE, Whitehead PN (1975) The significance of amylase in forensic investigations of body fluids. Forensic Sci 6:137–144

    Article  CAS  PubMed  Google Scholar 

  • Kobus HJ, Silenieks E, Scharnberg J (2002) Improving the effectiveness of fluorescence for the detection of seminal stains on fabrics. J Forensic Sci 47:819–823

    PubMed  Google Scholar 

  • Kohlmeier F, Schneider PM (2012) Successful RNA profiling of 23 year old blood stains. Forensic Sci Int Genet 6:274–276

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ (2012) Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med 126:55–62

    Article  PubMed  Google Scholar 

  • Legg KM, Powell R, Reisdorph N, Reisdorph R, Danielson PB (2014) Discovery of highly specific protein markers for the identification of biological stains. Electrophoresis 35:3069–3078

    Article  CAS  PubMed  Google Scholar 

  • Liang T, Roy R (2014) Ultraviolet-visible spectrophotometry (UV-VIS) and SALIgAE® qualitative and semi-quantitative tools for the analysis of salivary amylase. J Forensic Res 5:247

    Google Scholar 

  • Lin MH, Jones DF, Fleming R (2015) Transcriptomic analysis of degraded forensic body fluids. Forensic Sci Int Genet 17:35–42

    Article  CAS  PubMed  Google Scholar 

  • Lindenbergh A, De Pagter M, Ramdayal G et al (2012) A multiplex (m)RNA profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet 6:565–577

    Article  CAS  PubMed  Google Scholar 

  • Lindenbergh A, Van den Berge M, Oostra RJ et al (2013a) Development of a mRNA profiling multiplex from the inference of organ tissues. Int J Legal Med 127:891–900

    Article  PubMed  Google Scholar 

  • Lindenbergh A, Maaskant P, Sijen T (2013b) Implementation of RNA profiling in forensic casework. Forensic Sci Int Genet 7:159–166

    Article  CAS  PubMed  Google Scholar 

  • Lunetta P, Sippel H (2009) Positive prostate-specific antigen (PSA) reaction in post mortem rectal swabs: a cautionary note. J Forensic Legal Med 16:397–399

    Article  Google Scholar 

  • Luo XY, Li ZL, Peng D, Wang L, Zhang L, Liang WB (2015) MicroRNA markers for forensic body fluid identification obtained from miRCURYTM LNA array. Forensic Sci Int Genet Suppl Ser 5:e630–e632

    Article  Google Scholar 

  • Lynch L, Gamblin A, Vintiner S, Simons J (2015) STR profiling of epithelial cells identified by X/Y FISH labelling and laser microdissection using standard and elevated PCR conditions. Forensic Sci Int Genet 16:1–7

    Article  CAS  PubMed  Google Scholar 

  • Madi T, Balamurugan K, Bombardi R, Duncan G, McCord B (2012) The determination of tissue-specific DNA methylation patterns in forensic biofluids using bisulfite modification and pyrosequencing. Electrophoresis 33:1736–1745

    Article  CAS  PubMed  Google Scholar 

  • Malkov VA, Serikawa KA, Balantac N et al (2009) Multiplexed measurements of gene signatures in different analytes using the Nanostring nCounter™ assay system. BMC Res Notes 2:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miranda TB, Jones PA (2007) DNA methylation: the nuts and bolts of repression. J Cell Physiol 213:384–390

    Article  CAS  PubMed  Google Scholar 

  • Misencik A, Laux DL (2007) Validation study of the SeratecHemDirect hemoglobin assay for the forensic identification of human blood. MAFS Newsl 36:18–26

    Google Scholar 

  • Moreno LI, Tate CM, Knott EL et al (2012) Determination of an effective housekeeping gene for the quantification of mRNA for forensic applications. J Forensic Sci 57:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Nussbaumer C, Gharehbaghi-Schnell E, Korschineck I (2006) Messenger RNA profiling: a novel method for body fluid identification by real time PCR. Forensic Sci Int 157:181–186

    Article  CAS  PubMed  Google Scholar 

  • Ohgane J, Yagi S, Shiota K (2008) Epigenetics: the DNA methylation profile of tissue dependent and differentially methylated regions in cells. Placenta 29:S29–S35

    Article  PubMed  CAS  Google Scholar 

  • Old JB, Schweers BA, Boonlayangoor PW, Reich KA (2009) Developmental validation of RSID™-saliva: a lateral flow immunochromatographic strip test for the forensic detection of saliva. J Forensic Sci 54:866–873

    Article  CAS  PubMed  Google Scholar 

  • Old JB, Schweers BA, Boonlayangoor PW, Reich KA (2012) Developmental validation of RSID-semen: a lateral flow immunochromatography strip test for the forensic identification of semen. J Forensic Sci 57:489–499

    Article  CAS  PubMed  Google Scholar 

  • Palagummi S, Harbison SA, Fleming RI (2014) A time-course analysis of mRNA expression during injury healing in human dermal injuries. Int J Legal Med 128:403–414

    Article  PubMed  Google Scholar 

  • Pang BCM, Cheung BKK (2007) Identification of human semenogelin in membrane strip test as an alternative method for the detection of semen. Forensic Sci Int 169:27–31

    Article  CAS  PubMed  Google Scholar 

  • Pang BCM, Cheung BKK (2008) Applicability of two commercially available kits for forensic identification of saliva stains. J Forensic Sci 53:1117–1122

    Article  PubMed  Google Scholar 

  • Park NJ, Zhou X, Yu T et al (2007) Characterization of salivary RNA by cDNA library analysis. Arch Oral Biol 52:30–35

    Article  CAS  PubMed  Google Scholar 

  • Park SM, Park SY, Kim JH et al (2013a) Genome-wide mRNA profiling and multiplex quantitative RT-PCR for forensic body fluid identification. Forensic Sci Int Genet 7:143–150

    Article  CAS  PubMed  Google Scholar 

  • Park JL, Park SM, Kim JH et al (2013b) Forensic body fluid identification by analysis of multiple RNA markers using NanoString technology. Genomics Inform 11:277–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson SK, Jenson CG, Vintiner SK, McGlashan SR (2006) Immunohistochemical staining as a potential method for the identification of vaginal epithelial cells in forensic casework. J Forensic Sci 51:1138–1143

    Article  PubMed  Google Scholar 

  • Quinones I, Sheppard D, Harbison SA, Elliot DA (2006) Comparative analysis of luminol formulations. Can Soc Forensic Sci 40:53–63

    Article  Google Scholar 

  • Richard ML, Harper KA, Craig RL, Onorato AJ, Robertson JM, Donfack J (2012) Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis. Forensic Sci Int Genet 6:452–460

    Article  CAS  PubMed  Google Scholar 

  • Roeder AD, Haas C (2013) mRNA profiling using a minimum of five mRNA markers per body fluid and a novel scoring method for body fluid identification. Int J Legal Med 27:707–721

    Article  Google Scholar 

  • Sagawa K, Kimura A, Saito Y et al (2003) Production and characterisation of a monoclonal antibody for sweat-specific protein and its application for sweat identification. Int J Legal Med 117:90–95

    Article  PubMed  Google Scholar 

  • Sakurada K, Akutsu T, Fukushima H, Watanabe K, Yoshino M (2010) Detection of dermicidin for sweat identification by real time RT PCR and ELISA. Forensic Sci Int 194:80–84

    Article  CAS  PubMed  Google Scholar 

  • Sakurada K, Akutsu T, Watanabe K, Fujinami Y, Yoshino M (2011) Expression of statherin mRNA and proteins in nasal and vaginal secretions. Legal Med 13:309–313

    Article  CAS  PubMed  Google Scholar 

  • Sato I, Kojima K, Yamasaki T et al (2004) Rapid detection of semenogelin by one step immunochromatographic assay for semen identification. J Immunol Methods 287:137–145

    Article  CAS  PubMed  Google Scholar 

  • Schulz MM, Buschner MGD, Leidig R et al (2010) A new approach to the investigation of sexual offenses-cytoskeleton analysis reveals the origin of cells found on forensic swabs. J Forensic Sci 55:492–498

    Article  CAS  PubMed  Google Scholar 

  • Schweers BA, Old J, Boonlayangoor PW, Reich KA (2008) Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification™-blood). Forensic Sci Int Genet 2:243–247

    Article  PubMed  Google Scholar 

  • Setzer M, Juusola J, Ballantyne J (2008) Recovery and stability of RNA in vaginal swabs and blood, semen and saliva stains. J Forensic Sci 53:296–305

    Article  CAS  PubMed  Google Scholar 

  • Simich JP, Morris SL, Klick RL et al (1999) Validation of the use of a commercially available kit for the identification of prostate specific antigen (PSA) in semen stains. J Forensic Sci 44:1229–1231

    Article  CAS  PubMed  Google Scholar 

  • Simons JL, Vintiner SK (2012) Efficacy of several candidate protein biomarkers in the differentiation of vaginal from buccal epithelial cells. J Forensic Sci 57:1585–1590

    Article  CAS  PubMed  Google Scholar 

  • Stombaugh PM, Kearney JJ (1987) Factors affecting the use of lactate dehydrogenase as a means of bloodstain differentiation. J Forensic Sci 23:94–105

    Google Scholar 

  • Su CW, Li CY, Lee JCI et al (2015) A novel application of real-time RT-LAMP for body fluid identification: using HBB detection as the model. Forensic Sci Med Pathol 11(2):208–215

    Article  CAS  PubMed  Google Scholar 

  • Thorogate R, Moreira JCS, Jickells S, Miele MMP, Daniel B (2008) A novel fluorescence-based method in forensic science for the detection of blood in situ. Forensic Sci Int Genet 2:363–371

    Article  PubMed  Google Scholar 

  • Tobe SS, Watson N, Daeid NN (2007) Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecular-weight DNA. J Forensic Sci 52:102–109

    Article  CAS  PubMed  Google Scholar 

  • Van den Berge M, Carracedo A, Gomes I et al (2014) A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results. Forensic Sci Int Genet 10:40–48

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg N, van Oorshot RAH (2006) The use of Polilight in the detection of seminal fluid, saliva and bloodstains and comparison with conventional chemical based screening tests. J Forensic Sci 51:361–370

    Article  CAS  PubMed  Google Scholar 

  • Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17

    Article  CAS  PubMed  Google Scholar 

  • Visser M, Zubakov D, Ballantyne KA, Kayser M (2011) mRNA based skin identification for forensic applications. Int J Legal Med 125:253–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasserstrom A, Frumkin D, Davidson A, Shpitzen M, Herman Y, Gafny R (2013) Demonstration of DSI-semen—a novel DNA methylation-based forensic semen identification assay. Forensic Sci Int Genet 7:136–142

    Article  CAS  PubMed  Google Scholar 

  • Webb JL, Creamer TI, Quickenden TI (2006) A comparison of the presumptive luminol test for blood with four non-chemiluminescent forensic techniques. J Forensic Sci 51:361–370

    Article  CAS  Google Scholar 

  • Williams E, Lin MH, Harbison SA, Fleming RI (2014) The development of a method of suspension RNA-FISH for forensically relevant epithelial cells using LNA probes. Forensic Sci Int Genet 9:85–92

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Diamandis EP (1995) Prostate specific antigen in milk of lactating women. Clin Chem 41:54–58

    Article  CAS  PubMed  Google Scholar 

  • Zubakov D, Hanekamp E, Kokshoorn M, Van Ijcken W, Kayser M (2008) Stable mRNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med 122:135–142

    Article  PubMed  Google Scholar 

  • Zubakov D, Kokshoorn M, Kloosterman A, Kayser M (2009) New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med 123:71–74

    Article  PubMed  Google Scholar 

  • Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 124:217–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Zubakov D, Kokmeijer I, Ralf A et al (2015) Towards simultaneous individual and tissue identification: a proof-of-principle study on parallel sequencing of STRs, amelogenin, and mRNAs with the Ion Torrent PGM. Forensic Sci Int Genet 17:122–128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, A., Rana, M., Pradhan, A., Sinha, M. (2020). RNA- and DNA-Based Identification of Body Fluids. In: Shrivastava, P., Dash, H.R., Lorente, J.A., Imam, J. (eds) Forensic DNA Typing: Principles, Applications and Advancements . Springer, Singapore. https://doi.org/10.1007/978-981-15-6655-4_5

Download citation

Publish with us

Policies and ethics