Skip to main content

Recent Advances in Spinal Implants

  • Living reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology
  • 22 Accesses

Abstract

In recent years, there have been significant advances in the design and functionality of spinal implants. The goals of these developments have been to enhance spinal fusion by developing biomaterials and orthobiologics, motion preservation in spinal segments, usage of customized implants, developing lesser invasive approaches in surgery and improving patient safety. Advances in biomaterial usage have both been by modifications of existing substrates and development of newer alloys. These developments are bolstered by breakthroughs in orthobiologics. Motion preservation has made an appearance both as disc arthroplasty as well as development of non-fusion implants. Implant customization has broken new frontiers by the assimilation of 3-D printing to spinal implants supplemented by advances in tissue engineering. Newer designs of implants for lesser invasive spinal surgery have reduced the morbidity associated with surgery. Overall, patient safety has been improved by advent of navigation and robotic technology and the use of neuromonitoring. The field of spine surgery is dynamic; any advances need to be monitored not only for their potential but also for their cost-effectiveness and utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tarpada SP, Morris MT, Burton DA. Spinal fusion surgery: a historical perspective. J Orthop. 2017;14:134–6.

    Article  PubMed  Google Scholar 

  2. Warburton A, Girdler SJ, Mikhail CM, Ahn A, Cho SK. Biomaterials in spinal implants: a review. Neurospine. 2020;17(1):101–10.

    Article  PubMed  Google Scholar 

  3. Singh NK, Singh NK, Pandit D, Saxena KK. Recent trends in bio-materials and advances in design of spinal fusion implants. Adv Mater Process Technol. 2022;8:2122–41.

    Google Scholar 

  4. Yoshihara H. Rods in spinal surgery: a review of the literature. Spine J. 2013;13:1350–8.

    Article  PubMed  Google Scholar 

  5. Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg. 2014;6:81–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Enders JJ, Coughlin D, Mroz TE, Vira S. Surface technologies in spinal fusion. Neurosurg Clin N Am. 2020;31:57–64.

    Article  PubMed  Google Scholar 

  7. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61:1189–224.

    Article  CAS  Google Scholar 

  9. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK optima–a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.

    Article  CAS  PubMed  Google Scholar 

  10. McGilvray KC, Waldorff EI, Easley J, Seim HB, Zhang N, Linovitz RJ, Ryaby JT, Puttlitz CM. Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: biomechanical, microcomputed tomographic, and histologic analyses. Spine J. 2017;17:1907–16.

    Article  PubMed  Google Scholar 

  11. Walsh WR, Bertollo N, Christou C, Schaffner D, Mobbs RJ. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface. Spine J. 2015;15:1041–9.

    Article  PubMed  Google Scholar 

  12. Hanc M, Fokter SK, Vogrin M, Molicnik A, Recnik G. Porous tantalum in spinal surgery: an overview. Eur J Orthop Surg Traumatol. 2016;26:1–7.

    Article  PubMed  Google Scholar 

  13. Sagomonyants KB, Hakim-Zargar M, Jhaveri A, Aronow MS, Gronowicz G. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res. 2011;29:609–16.

    Article  PubMed  Google Scholar 

  14. Bal BS, Rahaman MN. Orthopedic applications of silicon nitride ceramics. Acta Biomater. 2012;8:2889–98.

    Article  CAS  PubMed  Google Scholar 

  15. Smith MW, Romano DR, McEntire BJ, Bal BS. A single center retrospective clinical evaluation of anterior cervical discectomy and fusion comparing allograft spacers to silicon nitride cages. J Spine Surg. 2018;4:349–60.

    Article  PubMed  PubMed Central  Google Scholar 

  16. McGilvray KC, Easley J, Seim HB, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018;18:1250–60.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Olivares-Navarrete R, Gittens RA, Schneider JM, Hyzy SL, Haithcock DA, Ullrich PF, Schwartz Z, Boyan BD. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J. 2012;12:265–72.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cheng A, Humayun A, Cohen DJ, Boyan BD, Schwartz Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication. 2014;6:045007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shirazi-Adl A, Dammak M, Paiement G. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J Biomed Mater Res. 1993;27:167–75.

    Article  CAS  PubMed  Google Scholar 

  20. Jasty M, Bragdon C, Burke D, O’Connor D, Lowenstein J, Harris WH. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Joint Surg Am. 1997;79:707–14.

    Article  CAS  PubMed  Google Scholar 

  21. Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF. Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22:1241–51.

    Article  CAS  PubMed  Google Scholar 

  22. Kim H-M, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 2005;26:4366–73.

    Article  CAS  PubMed  Google Scholar 

  23. de Groot K, Geesink R, Klein CP, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res. 1987;21:1375–81.

    Article  PubMed  Google Scholar 

  24. Wu X, Liu X, Wei J, Ma J, Deng F, Wei S. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. Int J Nanomedicine. 2012;7:1215–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bonfield W. Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacement. Ann N Y Acad Sci. 1988;523:173–7.

    Article  CAS  PubMed  Google Scholar 

  26. Tsou H-K, Chi M-H, Hung Y-W, Chung C-J, He J-L. In vivo Osseointegration performance of titanium dioxide coating modified polyetheretherketone using arc ion plating for spinal implant application. Biomed Res Int. 2015;2015:328943.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Park PJ, Lehman RA. Optimizing the spinal interbody implant: current advances in material modification and surface treatment technologies. Curr Rev Musculoskelet Med. 2020;13(6):688–95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Han C-M, Lee E-J, Kim H-E, Koh Y-H, Kim KN, Ha Y, Kuh S-U. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials. 2010;31:3465–70.

    Article  CAS  PubMed  Google Scholar 

  29. Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P, Stenport V. Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. J Biomed Mater Res A. 2013;101:465–71.

    Article  PubMed  Google Scholar 

  30. Kienle A, Graf N, Wilke H-J. Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination? Spine J. 2016;16:235–42.

    Article  PubMed  Google Scholar 

  31. Torstrick B, Evans N, Stevens H, Gall K, Guldberg R. Do surface porosity and pore size influence mechanical properties and cellular response to PEEK? Clin Orthop Relat Res. 2016;474:2373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gotman I. Characteristics of metals used in implants. J Endourol. 1997;6:383–9.

    Article  Google Scholar 

  33. Ebraheim NA, Rupp RE, Savolaine ER, et al. Posterior plating of the cervical spine. J Spinal Disord. 1995;8:111–5.

    Article  CAS  PubMed  Google Scholar 

  34. Serhan H, Mhatre D, Newton P, et al. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves? J Spinal Disord Tech. 2013;26:E70–4.

    Article  PubMed  Google Scholar 

  35. Angelliaume A, Ferrero E, Mazda K, et al. Titanium vs cobalt chromium: what is the best rod material to enhance adolescent idiopathic scoliosis correction with sublaminar bands? Eur Spine J. 2017;26:1732–8.

    Article  PubMed  Google Scholar 

  36. Rhalmi S, Charette S, Assad M, et al. The spinal cord dura mater reaction to nitinol and titanium alloy particles: a 1-year study in rabbits. Eur Spine J. 2007;16:1063–72.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Buehler WJ, Wang FE. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng. 1968;1:105–20.

    Article  Google Scholar 

  38. Biesiekierski A, Wang J, Gepreel MA, et al. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ponnappan RK, Serhan H, Zarda B, et al. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J. 2009;9:263–7.

    Article  PubMed  Google Scholar 

  40. Cook SD, Patron LP, Christakis PM, et al. Comparison of methods for determining the presence and extent of anterior lumbar interbody fusion. Spine (Phila Pa 1976). 2004;29:1118–23.

    Article  PubMed  Google Scholar 

  41. Grob D, Benini A, Junge A, et al. Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine (Phila Pa 1976). 2005;30:324–31.

    Article  PubMed  Google Scholar 

  42. Dick JC, Bourgeault CA. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine (Phila Pa 1976). 2001;26:1668–72.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao X, Niinomi M, Nakai M, et al. Beta type Ti-Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater. 2012;8:1990–7.

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen TQ, Buckley JM, Ames C, et al. The fatigue life of contoured cobalt chrome posterior spinal fusion rods. Proc Inst Mech Eng H. 2011;225:194–8.

    Article  PubMed  Google Scholar 

  45. Liu H, Niinomi M, Nakai M, et al. Mechanical properties and cytocompatibility of oxygen-modified beta-type Ti-Cr alloys for spinal fixation devices. Acta Biomater. 2015;12:352–61.

    Article  CAS  PubMed  Google Scholar 

  46. Jacobs E, Roth AK, Arts JJ, et al. Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation. J Mater Sci Mater Med. 2017;28:148. https://doi.org/10.1007/s10856-017-5953-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsuang FY, Hsieh YY, Kuo YJ, et al. Assessment of the suitability of biodegradable rods for use in posterior lumbar fusion: an in-vitro biomechanical evaluation and finite element analysis. PLoS One. 2017;12:e0188034.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shi LY, Wang A, Zang FZ, et al. Tantalum-coated pedicle screws enhance implant integration. Colloids Surf B Biointerfaces. 2017;160:22–32.

    Article  CAS  PubMed  Google Scholar 

  49. Jansen JA, van de Waerden JP, Wolke JG, et al. Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res. 1991;25:973–89.

    Article  CAS  PubMed  Google Scholar 

  50. Hasegawa T, Inufusa A, Imai Y, et al. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J. 2005;5:239–43.

    Article  PubMed  Google Scholar 

  51. Liu GM, Kong N, Zhang XY, et al. Extracellular matrix-coating pedicle screws conduct and induce osteogenesis. Eur J Orthop Surg Traumatol. 2014;24(Suppl 1):S173–82.

    Article  PubMed  Google Scholar 

  52. Lonner BS, Auerbach JD, Boachie-Adjei O, et al. Treatment of thoracic scoliosis: are monoaxial thoracic pedicle screws the best form of fixation for correction? Spine (Phila Pa 1976). 2009;34:845–51.

    Article  PubMed  Google Scholar 

  53. Vigneswaran HT, Grabel ZJ, Eberson CP, et al. Surgical treatment of adolescent idiopathic scoliosis in the United States from 1997 to 2012: an analysis of 20,346 patients. J Neurosurg Pediatr. 2015;16:322–8.

    Article  PubMed  Google Scholar 

  54. Wang H, Zhao Y, Mo Z, et al. Comparison of short-segment monoaxial and polyaxial pedicle screw fixation combined with intermediate screws in traumatic thoracolumbar fractures: a finite element study and clinical radiographic review. Clinics (Sao Paulo). 2017;72:609–17.

    Article  PubMed  Google Scholar 

  55. Dalal A, Upasani VV, Bastrom TP, et al. Apical vertebral rotation in adolescent idiopathic scoliosis: comparison of uniplanar and polyaxial pedicle screws. J Spinal Disord Tech. 2011;24:251–7.

    Article  PubMed  Google Scholar 

  56. Pfeiffer M, Hoffman H, Goel VK, et al. In vitro testing of a new transpedicular stabilization technique. Eur Spine J. 1997;6:249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McKinley TO, McLain RF, Yerby SA, et al. The effect of pedicle morphometry on pedicle screw loading. A synthetic model. Spine (Phila Pa 1976). 1997;22:246–52.

    Article  CAS  PubMed  Google Scholar 

  58. Lao L, Li Q, Zhong G, et al. Biomechanical study of a novel self-locking plate system for anterior cervical fixation. J Orthop Surg Res. 2014;9:120.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cho PG, Ji GY, Park SH, et al. Biomechanical analysis of biodegradable cervical plates developed for anterior cervical discectomy and fusion. Asian Spine J. 2018;12:1092–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hu W, Shen X, Sun T, et al. Laminar reclosure after single open-door laminoplasty using titanium miniplates versus suture anchors. Orthopedics. 2014;37:e71–8.

    Article  PubMed  Google Scholar 

  61. Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med. 2002;48(2):142–8.

    CAS  PubMed  Google Scholar 

  62. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine. 1995;20:1055–60.

    Article  CAS  PubMed  Google Scholar 

  63. Cowley SP, Anderson LD. Hernias through donor sites for iliac-bone grafts. J Bone Joint Surg Am. 1983;65:1023–5.

    Article  CAS  PubMed  Google Scholar 

  64. Summers BN, Eisenstein SM. Donor site pain from the ilium: a complication of lumbar spine fusion. J Bone Joint Surg Br. 1989;71:677–80.

    Article  CAS  PubMed  Google Scholar 

  65. Freidlaender GE. Immune responses to osteochondral allografts: current knowledge and future directions. Clin Orthop. 1983;174:58–68.

    Google Scholar 

  66. White E, Shors EC. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin N Am. 1986;30:49–67.

    Article  CAS  PubMed  Google Scholar 

  67. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Bunger C. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg Br. 1993;75:270–8.

    Article  CAS  PubMed  Google Scholar 

  68. Leeuwenburgh S, Layrolle P, Barrere F, de Bruijn J, Schoonman J, van Blitterswijk CA, et al. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. J Biomed Mater Res. 2001;56:208–15.

    Article  CAS  PubMed  Google Scholar 

  69. Liu Y, Layrolle P, de Bruijn J, van Blitterswijk C, de Groot K. Biomimetic coprecipitation of calcium phosphate and bovine serum on titanium alloy. J Biomed Mater Res. 2001;57:327–35.

    Article  CAS  PubMed  Google Scholar 

  70. Joyce ME, Jingushi S, Bolander ME. Transforming growth factor-? In the regulation of fracture repair. Orthop Clin North Am. 1990;21:199–209.

    Article  CAS  PubMed  Google Scholar 

  71. Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A, et al. Immunolocalization and expression of bone morphogenetic protein 2 and 4 in fracture healing. J Orthop Res. 1995;13:357–67.

    Article  CAS  PubMed  Google Scholar 

  72. Nash TJ, Howlett CR, Martin C, Steele J, Johnson KA, Kicklin DJ. Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone. 1994;15:203–8.

    Article  CAS  PubMed  Google Scholar 

  73. Flynn JM. Fracture repair and bone grafting. In: OKU 10: orthopaedic knowledge update. Rosemont: American Academy of Orthopaedic Surgeons; 2011. p. 11–21.

    Google Scholar 

  74. Rihn JA, Gates C, Glassman SD, Phillips FM, Schwender JD, Albert TJ. The use of bone morphogenetic protein in lumbar spine surgery. J Bone Joint Surg Am. 2008;90:2014–25.

    PubMed  Google Scholar 

  75. Bourque WT, Gross M, Hall BK. Expression of four growth factors during fracture repair. Int J Dev Biol. 1993;37:573–9.

    CAS  PubMed  Google Scholar 

  76. Kaback LA, Soung Y, Naik A, Geneau G, Schwarz EM, Rosier RN, et al. Teriparatide (1-34 human PTH) regulation of osterix during fracture repair. J Cell Biochem. 2008;105:219–26. https://doi.org/10.1002/jcb.21816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Murtagh R, Castellvi AE. Motion preservation surgery in the spine. Neuroimaging Clin N Am. 2014;24(2):287–94.

    Article  PubMed  Google Scholar 

  78. Burkus JK, Traynelis VC, Haid RW, Mummaneni PV. Clinical and radiographic analysis of an artificial cervical disc: 7-year follow-up from the Prestige prospective randomized controlled clinical trial. J Neurosurg Spine. 2014;21(4):516–28.

    Article  PubMed  Google Scholar 

  79. Moatz B, Justin Tortolani P. Cervical disc arthroplasty: pros and cons. Surg Neurol Int. 2012;3(Suppl 3):S216–24.

    PubMed  PubMed Central  Google Scholar 

  80. Bai DY, Liang L, Zhang BB, Zhu T, Zhang HJ, Yuan ZG, Chen YF. Total disc replacement versus fusion for lumbar degenerative diseases – a meta-analysis of randomized controlled trials. Medicine (Baltimore). 2019;98(29):e16460.

    Article  PubMed  Google Scholar 

  81. Zigler JE, Sachs BL, Rashbaum RF, Ohnmeiss DD. Two- to 3-year follow-up of ProDisc-L: results from a prospective randomized trial of arthroplasty versus fusion. SAS J. 2007;1(2):63–7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wu J-C, Tu T-H, Mummaneni PV. Spinal arthroplasty: differences between the cervical and lumbar spine. World Neurosurg. 2012;78(3–4):245–6.

    Article  PubMed  Google Scholar 

  83. Salzmann SN, Plais N, Shue J, Girardi FP. Lumbar disc replacement surgery-successes and obstacles to widespread adoption. Curr Rev Musculoskelet Med. 2017;10(2):153–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fay L, Wu J, Tsai T, et al. Intervertebral disc rehydration after lumbar dynamic stabilization: magnetic resonance image evaluation with a mean followup of four years. Adv Orthop. 2013;2013:8.

    Article  Google Scholar 

  85. Fay L-Y, Wu J-C, Tsai T-Y, Wu C-L, Huang W-C, Cheng H. Dynamic stabilization for degenerative spondylolisthesis: evaluation of radiographic and clinical outcomes. Clin Neurol Neurosurg. 2013;115(5):535–41.

    Article  PubMed  Google Scholar 

  86. Wu J-C, Mummaneni PV. Using lumbar interspinous anchor with transforaminal lumbar interbody fixation. World Neurosurg. 2010;73(5):471–2.

    Article  PubMed  Google Scholar 

  87. Migliorini F, Chiu WO, Scrofani R, Chiu WK, Baroncini A, Iaconetta G, Maffulli N. Magnetically controlled growing rods in the management of early onset scoliosis: a systematic review. J Orthop Surg Res. 2022;17(1):309.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang W, Zhang Y, Zheng G, Zhang R, Wang Y. A biomechanical research of growth control of spine by shape memory alloy staples. Biomed Res Int. 2013;2013:384894.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Skaggs DL, Akbarnia BA, Flynn JM, Myung KS, Sponseller PD, Vitale MG, Chest Wall and Spine Deformity Study Group, Growing Spine Study Group, Pediatric Orthopaedic Society of North America, Scoliosis Research Society Growing Spine Study Committee. A classification of growth friendly spine implants. J Pediatr Orthop. 2014;34(3):260–74.

    Article  PubMed  Google Scholar 

  90. Ahmad AA. Early onset scoliosis and current treatment methods. J Clin Orthop Trauma. 2020;11(2):184–90.

    Article  PubMed  Google Scholar 

  91. Mao K, Wang Y, Xiao S, et al. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study. Eur Spine J. 2010;19:797–802.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Guo F, Dai J, Zhang J, et al. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine. PLoS One. 2017;12:e0171509.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Izatt MT, Thorpe PL, Thompson RG, et al. The use of physical biomodelling in complex spinal surgery. Eur Spine J. 2007;16:1507–18.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu ZX, Huang LY, Sang HX, et al. Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J Spinal Disord Tech. 2011;24:444–50.

    Article  PubMed  Google Scholar 

  95. Li C, Yang M, Xie Y, et al. Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J Orthop Sci. 2015;20:475–80.

    Article  PubMed  Google Scholar 

  96. Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine (Phila Pa 1976). 2016;41:E50–4.

    Article  PubMed  Google Scholar 

  97. Kim D, Lim JY, Shim KW, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Yonsei Med J. 2017;58:453–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Whatley BR, Kuo J, Shuai C, et al. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing. Biofabrication. 2011;3:015004.

    Article  PubMed  Google Scholar 

  99. Ursan ID, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc (2003). 2013;53:136–44.

    Article  PubMed  Google Scholar 

  100. Elsarrag M, Soldozy S, Patel P, Norat P, Sokolowski JD, Park MS, Tvrdik P, Kalani MYS. Enhanced recovery after spine surgery: a systematic review. Neurosurg Focus. 2019;46(4):E3.

    Article  PubMed  Google Scholar 

  101. Sik Goh T, Hwan Park S, Suk Kim D, Ryu S, Min Son S, Sub LJ. Comparison of endoscopic spine surgery and minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar disease: a meta-analysis. J Clin Neurosci. 2021;88:5–9. https://doi.org/10.1016/j.jocn.2021.03.030. Epub 2021 Mar 29.

    Article  PubMed  Google Scholar 

  102. Jiang F, Wilson JRF, Badhiwala JH, Santaguida C, Weber MH, Wilson JR, Fehlings MG. Quality and safety improvement in spine surgery. Global Spine J. 2020;10(1 Suppl):17S–28S.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Otomo N, Funao H, Yamanouchi K, Isogai N, Ishii K. Computed tomography-based navigation system in current spine surgery: a narrative review. Medicina (Kaunas). 2022;58(2):241.

    Article  PubMed  Google Scholar 

  104. Rawicki N, Dowdell JE, Sandhu HS. Current state of navigation in spine surgery. Ann Transl Med. 2021;9(1):85. https://doi.org/10.21037/atm-20-1335. PMID: 33553378; PMCID: PMC7859779.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lopez IB, Benzakour A, Mavrogenis A, Benzakour T, Ahmad A, Lemée JM. Robotics in spine surgery: systematic review of literature. Int Orthop. 2023;47(2):447–56. https://doi.org/10.1007/s00264-022-05508-9.

    Article  PubMed  Google Scholar 

  106. Park JH, Hyun SJ. Intraoperative neurophysiological monitoring in spinal surgery. World J Clin Cases. 2015;3(9):765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus FOC. 2009;27(4):E6.

    Article  Google Scholar 

  108. Charalampidis A, Jiang F, Wilson JRF, Badhiwala JH, Brodke DS, Fehlings MG. The use of intraoperative neurophysiological monitoring in spine surgery. Global Spine J. 2020;10(1_suppl):104S–14S.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hansraj KK. Stem Cells in Spine Surgery. Surg Technol Int. 2016;29:348–58.

    PubMed  Google Scholar 

  110. Association of Spine surgeons of India. ASSI Bi-Annual Newsletter. 2014. https://www.assi.in/pdf/NewsletterAuguest2014.pdf

  111. Schroeder J, Kueper J, Leon K, Liebergall M. Stem cells for spine surgery. World J Stem Cells. 2015;7(1):186–94.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Goldschlager T, Oehme D, Ghosh P, Zannettino A, Rosenfeld JV, Jenkin G. Current and future applications for stem cell therapies in spine surgery. Curr Stem Cell Res Ther. 2013;8(5):381–93.

    Article  CAS  PubMed  Google Scholar 

  113. Scaduto AA, Lieberman JR. Gene therapy for osteoinduction. Orthop Clin North Am. 1999;30:625–33.

    Article  CAS  PubMed  Google Scholar 

  114. Collon K, Gallo MC, Lieberman JR. Musculoskeletal tissue engineering: regional gene therapy for bone repair. Biomaterials. 2021;275:120901. https://doi.org/10.1016/j.biomaterials.2021.120901. Epub 2021 May 19.

    Article  CAS  PubMed  Google Scholar 

  115. Barri K, Zhang Q, Swink I, Aucie Y, Holmberg K, Sauber R, Altman DT, Cheng BC, Wang ZL, Alavi AH. Patient-specific self-powered metamaterial implants for detecting bone healing progress. Adv Funct Mater. 2022;32:2203533.

    Article  CAS  Google Scholar 

  116. Kim SJ, Wang T, Pelletier MH, Walsh WR. ‘SMART’ implantable devices for spinal implants: a systematic review on current and future trends. J Spine Surg [Online]. 2022;8(1):117–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ray, A. (2023). Recent Advances in Spinal Implants. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6278-5_103-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6278-5_103-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6278-5

  • Online ISBN: 978-981-15-6278-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics