Skip to main content

The Current Scenario and Prospects of Immobilization Remediation Technique for the Management of Heavy Metals Contaminated Soils

  • Chapter
  • First Online:
Approaches to the Remediation of Inorganic Pollutants

Abstract

Approximately, more than 200 million hectares are contaminated with heavy metals (HMs) having very high concentrations greater than the standard values worldwide. Thus, the urgent remediation of HMs contaminated soils is the need of the hour. In situ immobilization of HMs through organic, inorganic, and other stabilizing additives seems to be the most promising remediation technique in managing HMs pollution. The efficiency of different stabilizing agents has been previously tested for the rehabilitation of HMs contaminated soils with the immediate estimation of their leaching and availability from them. Among tested amendments, biochar and iron base amendments have shown their high efficiency in removing multi-HMs polluted soils. Thus, the immobilization technique seems to be a preferable alternative over other traditional remediation methods owing to its vast applicability, easy availability of raw materials, and wide acceptability. However, weathering activities may increase the risk of HMs remobilization due to the breakdown of organic amendments. Thus continuous monitoring of HMs soils is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad-Valle P, Álvarez-Ayuso E, Murciego A, Pellitero E (2016) Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil. Geoderma 280:57–66

    Article  CAS  Google Scholar 

  • Adeyeye EI (1994) Determination of trace heavy metals in Illisha africana fish and in associated water and soil sediments from some fish ponds. Int J Environ Stud 45:231–238

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Yang JE, Ro HM, Lee YH, Ok YS (2012) Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol Environ Saf 79:225–231

    Article  CAS  PubMed  Google Scholar 

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Alamgir M, Kibria MG, Islam M (2011) Effects of farm yard manure on cadmium and lead accumulation in Amaranth (Amaranthus oleracea L.). J Soil Sci Environ Manag 2(8):237–240

    Google Scholar 

  • Alshawabkeh AN (2009) Electrokinetic soil remediation: challenges and opportunities. Sep Sci Technol 44(10):2171–2187

    Article  CAS  Google Scholar 

  • Arabyarmohammadi H, Darban AK, Abdollahy M, Yong R, Ayati B, Zirakjou A, van der Zee SE (2018) Utilization of a novel chitosan/clay/biochar nanobiocomposite for immobilization of heavy metals in acid soil environment. J Polym Environ 26(5):2107–2119

    Article  CAS  Google Scholar 

  • Argiri A, Ioannou Z, Dimirkou A (2013) Impact of new soil amendments on the uptake of lead by crops. Commun Soil Sci Plant 44:566–573

    Article  CAS  Google Scholar 

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160(1–4):83

    Article  CAS  PubMed  Google Scholar 

  • Baker PG, Bishop PL (1997) Prediction of metal leaching rates from solidified/stabilized wastes using the shrinking unreacted core leaching procedure. J Hazard Mater 52(2–3):311–333

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Beiyuan J, Awad YM, Beckers F, Tsang DC, Ok YS, Rinklebe J (2017) Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 178:110–118

    Article  CAS  PubMed  Google Scholar 

  • Beolchini F, Fonti V, Rocchetti L, Saraceni G, Pietrangeli B, Dell’Anno A (2013) Chemical and biological strategies for the mobilisation of metals/semi-metals in contaminated dredged sediments: experimental analysis and environmental impact assessment. Chem Ecol 29(5):415–426

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Cai LM, Wang QS, Wen HH, Luo J, Wang S (2019) Heavy metals in agricultural soils from a typical township in Guangdong Province, China: occurrences and spatial distribution. Ecotoxicol Environ Saf 168:184–191

    Article  CAS  PubMed  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  PubMed  Google Scholar 

  • Cao XD, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889

    Article  CAS  PubMed  Google Scholar 

  • Chaoua S, Boussaa S, El Gharmali A, Boumezzough A (2019) Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agric Sci 18(4):429–436

    Google Scholar 

  • Chrastný V, Komárek M, Hájek T (2010) Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ Monit Assess 162:37-46.

    Google Scholar 

  • Chen YH, Li FA (2010) Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J Colloid Interface Sci 347(2):277–281

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Ye X, Zhang Q, Xiao W, Ni Z, Yang L, Huang M (2020) The effect of sepiolite application on rice Cd uptake–a two-year field study in southern China. J Environ Manag 254:109788

    Article  CAS  Google Scholar 

  • Cheng TW, Lee ML, Ko MS, Ueng TH, Yang SF (2012) The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl Clay Sci 56:90–96

    Article  CAS  Google Scholar 

  • Cheraghi M, Lorestani B, Merrikhpour H (2012) Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns. Biol Trace Elem Res 145(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Chiang YW, Santos RM, Ghyselbrecht K, Cappuyns V, Martens JA, Swennen R, Meesschaert B (2012) Strategic selection of an optimal sorbent mixture for in-situ remediation of heavy metal contaminated sediments: framework and case study. J Environ Manag 105:1–11

    Article  CAS  Google Scholar 

  • Dang VM, Joseph S, Van HT, Mai TLA, Duong TMH, Weldon S, Taherymoosavi S (2019) Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: the significant role of minerals on the biochar surfaces. Environ Technol 40(24):3200–3215

    Article  CAS  PubMed  Google Scholar 

  • Debela F, Arocena JM, Thring RW, Whitcombe T (2013) Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb-and Zn-contaminated soil. J Environ Manag 116:156–162

    Article  CAS  Google Scholar 

  • Ettler V (2016) Soil contamination near non-ferrous metal smelters: a review. Appl Geochem 64:56–74

    Article  CAS  Google Scholar 

  • Fayiga AO (2019) Remediation of inorganic and organic contaminants in military ranges. Environ Chem 81–91

    Google Scholar 

  • Finzgar N, Tlustos P, Lestan D (2007) Relationship of soil properties to fractionation, bioavailability and mobility of lead and zinc in soil. Plant Soil Environ 53(5):225

    Article  CAS  Google Scholar 

  • Fonti V, Dell’Anno A, Beolchini F (2013) Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment. Water Res 47(14):5139–5152

    Article  CAS  PubMed  Google Scholar 

  • Gascó G, Álvarez ML, Paz-Ferreiro J, Méndez A (2019) Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere 231:562–570

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero M, Melville LH, Ferrol N, Lott JN, Azcon-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54(2):103–110

    Article  PubMed  CAS  Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528

    Article  CAS  PubMed  Google Scholar 

  • Han H, Rafiq MK, Zhou T, Xu R, Mašek O, Li X (2019) A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater 369:780–796

    Article  CAS  PubMed  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92(10):2355–2388

    Article  CAS  Google Scholar 

  • Hembrom S, Singh B, Gupta SK, Nema AK (2020) A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: a global perspective. In: Contemporary environmental issues and challenges in era of climate change, pp 33–63

    Google Scholar 

  • Houben D, Pircar J, Sonnet P (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. J Geochem Explor 123:87–94

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Liu L, Zeng G, Xu P, Huang C, Deng L, Wang R, Wan J (2017) The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 174:545–553

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen Q, Deng M, Japenga J, Li T, Yang X, He Z (2018) Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in Southeast China. J Environ Manag 207:159–168

    Article  CAS  Google Scholar 

  • Huang C, Wang W, Yue S, Adeel M, Qiao Y (2020) Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness. Environ Pollut 114586

    Google Scholar 

  • Igalavithana AD, Lee SE, Lee YH, Tsang DC, Rinklebe J, Kwon EE, Ok YS (2017a) Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174:593–603

    Article  CAS  PubMed  Google Scholar 

  • Igalavithana AD, Park J, Ryu C, Lee YH, Hashimoto Y, Huang L, Lee SS (2017b) Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils. Chemosphere 177:157–166

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Puschenreiter M, Oburger E, Santner J, Wenzel WW (2012) Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud. Environ Pollut 170:222–231

    Article  CAS  PubMed  Google Scholar 

  • Ishak CF, Abdullah R (2014) In-situ immobilization of selected heavy metals in soils using agricultural wastes and industrial by-products. In: Proceedings of MARCO-FFTC joint Int. seminar on management and remediation technologies of rural soils contaminated, pp 22–26

    Google Scholar 

  • Jalili B, Sadegh-Zadeh F, Jabari-Giashi M, Emadi M (2020) Lead bioimmobilization in contaminated mine soil by Aspergillus Niger SANRU. J Hazard Mater 393:122375

    Article  CAS  PubMed  Google Scholar 

  • Joseph S, Husson O, Graber ER, van Zwieten L, Taherymoosavi S, Thomas T (2015) The electrochemical properties of biochars and how they affect soil redox properties and processes. Agronomy 5(3):322–340

    Article  Google Scholar 

  • Johnsen IV, Mariussen E, Voie Ø (2019) Assessment of intake of copper and lead by sheep grazing on a shooting range for small arms: a case study. Environ Sci Pollut Res 26:7337–7346.

    Google Scholar 

  • Juris B, Karina S, Ikrema H, Reinis J, Sandris L (2015) Removal of heavy metals from contaminated soils by electrokinetic remediation

    Google Scholar 

  • Kammann CI, Schmidt HP, Messerschmidt N, Linsel S, Steffens D, Müller C, Koyro HW, Conte P, Joseph S (2015) Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Rep 5:11080

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelebemang R, Dinake P, Sehube N, Daniel B, Totolo O, Laetsang M (2017) Speciation and mobility of lead in shooting range soils. Chem Spec Bioavailab 29:143–152

    Article  CAS  Google Scholar 

  • Khan W, Ramzani PMA, Anjum S, Abbas F, Iqbal M, Yasar A, Ihsan MZ, Khan SA (2017) Potential of miscanthus biochar to improve sandy soil health, in situ nickel immobilization in soil and nutritional quality of spinach. Chemosphere 185:1144–1156

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Ramzani PMA, Zubair M, Rasool B, Khan MK, Ahmed A, Iqbal M (2020) Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety. Sci Total Environ 710:136294

    Article  CAS  PubMed  Google Scholar 

  • Kierczak J, Potysz A, Pietranik A, Tyszka R, Modelska M, Néel C, Mihaljevič M (2013) Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (South-Western Poland). J Geochem Explor 124:183–194

    Article  CAS  Google Scholar 

  • Klebercz O, Mayes WM, Anton AD, Feigl V, Jarvis AP, Gruiz K (2012) Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary. J Environ Monit 14:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Komárek M, Vaněk A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides–a review. Environ Pollut 172:9–22

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Gao Y, Zhou Q, Zhao X, Sun Z (2018) Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. J. Hazard. Mater 343, 276-284.

    Google Scholar 

  • Kumar V, Singh J, Kumar P (2019) Heavy metals accumulation in crop plants: sources, response mechanisms, stress tolerance and their effects. In: Contaminants in agriculture and environment: health risks and remediation 1, p 38

    Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Rev Environ Contam Toxicol 236:1–115

    CAS  PubMed  Google Scholar 

  • Lago-Vila M, Rodríguez-Seijo A, Vega FA, Arenas-Lago D (2019) Phytotoxicity assays with hydroxyapatite nanoparticles lead the way to recover firing range soils. Sci Total Environ 690:1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang T (2013) Vitrification. The International Information Center for Geotechnical Engineers

    Google Scholar 

  • Li P, Lin C, Cheng H, Duan X, Lei K (2015) Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol Environ Saf 113:391–399

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Xu Y, Wang L, Sun G, Qin X, Sun Y (2011) In-situ immobilization of cadmium and lead in a contaminated agricultural field by adding natural clays combined with phosphate fertilizer. Acta Sci Circum (in Chinese) 31:1011–1018

    CAS  Google Scholar 

  • Liang X, Xu Y, Xu Y, Wang P, Wang L, Sun Y, Huang R (2016) Two-year stability of immobilization effect of sepiolite on Cd contaminants in paddy soil. Environ Sci Pollut Res 23(13):12922–12931

    Article  CAS  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated bio-chars. Chemosphere 87:151–157

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Xu F, Xie Y, Wang C, Zhang A, Li L, Xu H (2018) Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Sci Total Environ 645:702–709

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46(3):854–862

    Google Scholar 

  • Lu H, Li Z, Fu S, Méndez A, Gascó G, Paz-Ferreiro J (2014) Can biochar and phytoextractors be jointly used for cadmium remediation? PLoS One 9(4)

    Google Scholar 

  • Lü J, Jiao WB, Qiu HY, Chen B, Huang XX, Kang B (2018) Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You’xi county Southeast China. Geoderma 310:99–106

    Article  CAS  Google Scholar 

  • Lwin CS, Seo BH, Kim HU, Owens G, Kim KR (2018) Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—a critical review. Soil Sci Plant Nutr 64(2):156–167

    Article  CAS  Google Scholar 

  • Lyu H, Zhao H, Tang J, Gong Y, Huang Y, Wu Q, Gao B (2018) Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Chemosphere 194:360–369

    Article  CAS  PubMed  Google Scholar 

  • Mariussen E, Heier LS, Teien HC, Pettersen MN, Holth TF, Salbu B, Rosseland BO (2017) Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range. Ecotoxicol Environ Saf 135:327–336

    Google Scholar 

  • Mahar A, Ping W, Ronghua LI, Zhang Z (2015) Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere 25(4):555–568

    Article  CAS  Google Scholar 

  • Marrugo-Negrete J, Pinedo-Hernández J, Díez S (2017) Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ Res 154:380–388

    Article  CAS  PubMed  Google Scholar 

  • Montenegro AC, Ferreyroa GV, Parolo ME, Tudino MB, Lavado RS, Molina FV (2015) Copper speciation in soil: time evolution and effect of clay amendment. Water Air Soil Pollut 226:1–10

    Article  CAS  Google Scholar 

  • Muddassir M, Noor MA, Ahmed A, Aldosari F, Waqas MA, Zia MA, Jalip MW (2019) Awareness and adoption level of fish farmers regarding recommended fish farming practices in Hafizabad, Pakistan. J Saudi Soc Agric Sci 18(1):41–48

    Google Scholar 

  • Muhammad I, Puschenreiter M, Wenzel WW (2012) Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Sci Total Environ 416:490–500

    Article  CAS  PubMed  Google Scholar 

  • Nacke H, Gonçalves AC, Schwantes D, Nava IA, Strey L, Coelho GF (2013) Availability of heavy metals (Cd, Pb, and Cr) in agriculture from commercial fertilizers. Arch Environ Contam Toxicol 64(4):537–544

    Article  CAS  PubMed  Google Scholar 

  • Naidu G, Ryu S, Thiruvenkatachari R, Choi Y, Jeong S, Vigneswaran S (2019) A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ Pollut 247:1110–1124

    Article  CAS  PubMed  Google Scholar 

  • Nazari S, Rahimi G, Nezhad AKJ (2019) Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil. J Environ Chem Eng 7(3):103064

    Article  CAS  Google Scholar 

  • Nejad ZD, Jung MC, Kim KH (2018) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40(3):927–953

    Article  CAS  Google Scholar 

  • Ning D, Liang Y, Song A (2016) In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Environ Sci Pollut Res 23:23638

    Article  CAS  Google Scholar 

  • Ottosen LM, Jensena PE, Kirkelunda GM, Dias-Ferreirab C, Hansenc HK (2012) Electrodialytic remediation of heavy metal polluted soil–treatment of water saturated or suspended soil. Chem Eng 28:103–108

    Google Scholar 

  • Ou-Yang X, Chen JW, Zhang XG (2010) Advance in supercritical CO2 fluid extraction of contaminants from soil. Geol Bull China 29(11):1655–1661

    CAS  Google Scholar 

  • Park JH, Choppala G, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–445

    Article  CAS  Google Scholar 

  • Pain DJ, Mateo R, Green RE (2019). Effects of lead from ammunition on birds and other wildlife: a review and update. Ambio 48:935–953

    Google Scholar 

  • Paz-Ferreiro J, Fu S (2014) Biological indices for soil quality evaluation: perspectives and limitations. Land Degrad Dev

    Google Scholar 

  • Pedersen KB, Kirkelund GM, Ottosen LM, Jensen PE, Lejon T (2015) Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments. J Hazard Mater 283:712–720

    Article  CAS  PubMed  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161(2–3):633–640

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Li X, Xiao S, Fan W (2018) Review of remediation technologies for sediments contaminated by heavy metals. J Soils Sediments 18(4):1701–1719

    Article  CAS  Google Scholar 

  • Puschenreiter M (2008) Final research report

    Google Scholar 

  • Quenea K, Lamy I, Winterton P, Bermond A, Dumat C (2009) Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 149(3–4):217–223

    Article  CAS  Google Scholar 

  • Radziemska M, Bęś A, Gusiatin ZM, Cerdà A, Mazur Z, Jeznach J, Brtnický M (2019) The combined effect of phytostabilization and different amendments on remediation of soils from post-military areas. Sci Total Environ 688:37–45

    Article  CAS  PubMed  Google Scholar 

  • Radziemska M, Bęś A, Gusiatin ZM, Cerdà A, Jeznach J, Mazur Z, Brtnický M (2020) Assisted phytostabilization of soil from a former military area with mineral amendments. Ecotoxicol Environ Saf 188:109934

    Article  CAS  PubMed  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DC, Zhang M, Vithanage M, Mandal S, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rasaki SA, Bingxue Z, Guarecuco R, Thomas T, Minghui Y (2019) Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: a critical review. J Clean Prod 213:42–58

    Article  CAS  Google Scholar 

  • Ricou-Hoeffer P, Hequet V, Lecuyer I, Le Cloirec P (2000) Adsorption and stabilization of nickel ions on fly ash/lime mixing. Water Sci Technol 42:79–84

    Article  CAS  Google Scholar 

  • Rieuwerts JS (2007) The mobility and bioavailability of trace metals in tropical soils: a review. Chem Spec Bioavailab 19(2):75–85

    Article  CAS  Google Scholar 

  • Sabir M, Hanafi MM, Aziz T, Ahmad HR, Zia-Ur-Rehman M, Saifullah GM, Hakeem KR (2013) Comparative effect of activated carbon, pressmud and poultry manure on immobilization and concentration of metals in maize (Zea mays) grown on contaminated soil. Int J Agric Biol 15:559–564

    CAS  Google Scholar 

  • Sarkar B, Rusmin R, Ugochukwu UC, Mukhopadhyay R, Manjaiah KM (2019) Modified clay minerals for environmental applications. In: Modified clay and zeolite nanocomposite materials. Elsevier, pp 113–127

    Google Scholar 

  • Selim HM (2018) Phosphate in soils: interaction with micronutrients, radionuclides and heavy metals. CRC Press

    Google Scholar 

  • Sengupta I, Tarar JL (2014) Use of fly ash as bio-pesticide for cotton plant. Int J Current Res Life Sci 3(12):087–090

    Google Scholar 

  • Shahbaz AK, Iqbal M, Jabbar A, Hussain S, Ibrahim M (2018a) Assessment of nickel bioavailability through chemical extractants and red clover (Trifolium pratense L.) in an amended soil: related changes in various parameters of red clover. Ecotoxicol Environ Saf 149:116–127

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz AK, Lewińska K, Iqbal J, Ali Q, Iqbal M, Abbas F, Ramzani PMA (2018b) Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. J Environ Manag 218:256–270

    Article  CAS  Google Scholar 

  • Shahbaz AK, Ramzani PMA, Saeed R, Turan V, Iqbal M, Lewińska K, Fatima M (2019) Effects of biochar and zeolite soil amendments with foliar proline spray on nickel immobilization, nutritional quality and nickel concentrations in wheat. Ecotoxicol Environ Saf 173:182–191

    Article  CAS  PubMed  Google Scholar 

  • Shaheen SM, El-Naggar A, Antoniadis V, Moghanm FS, Zhang Z, Tsang DC, Rinklebe J (2020) Release of toxic elements in fishpond sediments under dynamic redox conditions: assessing the potential environmental risk for a safe management of fisheries systems and degraded waterlogged sediments. J Environ Manag 255:109778

    Article  CAS  Google Scholar 

  • Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM (2018) Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. Biotech 8(4):216

    Google Scholar 

  • Sheikhhosseini A, Shirvani M, Shariatmadari H (2013) Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals. Geoderma 192:249–253

    Article  CAS  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43(3):246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KL (2011) Gypsum as an agricultural amendment: general use guidelines. TDD no. 800-589-8292 (Ohio only)

    Google Scholar 

  • Stanojković-Sebić A, Maksimović S, Jošić D, Pivić R (2014) The use of metallurgical slag as a by-product of the steel industry in chemical melioration of acid soils. Metall Mater Eng 20(3):191–198

    Article  Google Scholar 

  • Sturm P, Gluth GJG, Brouwers HJH, Kühne HC (2016) Synthesizing one-part geopolymers from rice husk ash. Constr Build Mater 124:961–966

    Article  CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review. Bioresour Technol 99(14):6017–6027

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Li Y, Xu Y, Liang X, Wang L (2015) In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl Clay Sci 105:200–206

    Article  CAS  Google Scholar 

  • Sun Y, Xu Y, Xu Y, Wang L, Liang X, Li Y (2016) Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials. Environ Pollut 208:739–746

    Article  CAS  PubMed  Google Scholar 

  • Tandy S, Meier N, Schulin R (2017) Use of soil amendments to immobilize antimony and lead in moderately contaminated shooting range soils. J Hazard Mater 324:617–625

    Google Scholar 

  • Tauqeer HM, Hussain S, Abbas F, Iqbal M (2019) The potential of an energy crop “Conocarpus erectus” for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: an excellent option for the management of multi-metal contaminated soils. Ecotoxicol Environ Saf 173:273–284

    Article  CAS  PubMed  Google Scholar 

  • Teresa AB, Valentina C (2012) Possible uses of steelmaking slag in agriculture: an overview, material recycling – trends and perspectives. ISBN: 978-953-51-0327-1

    Google Scholar 

  • Tessier A, Campbell PG, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  CAS  Google Scholar 

  • Tsunematsu S, Uematsu E, Saito K, Tamura H (2012) Immobilization of arsenic in natural soils by gypsum powder, mechanistic interpretations. Transactions of the Japanese Society of Irrigation. Drainage Rural Eng 80:141–150

    Google Scholar 

  • Tu C, Wei J, Guan F, Liu Y, Sun Y, Luo Y (2020) Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ Int 137:105576

    Article  CAS  PubMed  Google Scholar 

  • Turan V, Khan SA, Iqbal M, Ramzani PMA, Fatima M (2018) Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol Environ Saf 161:409–419

    Article  CAS  PubMed  Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190(1–3):432–444

    Article  CAS  PubMed  Google Scholar 

  • Valerie C (2015) Use of red mud in soil remediation: review of applications and challenges. Bauxite Residue Valorization Best Practices 1(1):81–87

    Google Scholar 

  • Vink JP, Harmsen J, Rijnaarts H (2010) Delayed immobilization of heavy metals in soils and sediments under reducing and anaerobic conditions; consequences for flooding and storage. J Soil Sediments 10(8):1633–1645

    Article  CAS  Google Scholar 

  • Voglar GE, Leštan D (2011) Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives. J Hazard Mater 192(2):753–762

    Article  CAS  PubMed  Google Scholar 

  • Walraven N, Van Os BJH, Klaver GT, Middelburg JJ, Davies GR (2014) The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in the Netherlands. Sci Total Environ 472:888–900

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Dai JG (2017) Use of magnesia sand for optimal design of high performance magnesium potassium phosphate cement mortar. Construct Build Mater 153:385–392

    Article  CAS  Google Scholar 

  • Wang K, Zhang J, Zhu Z, Huang H, Li T, He Z, Yang X, Alva A (2012) Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii. J Soils Sediments 12:1089–1099

    Article  CAS  Google Scholar 

  • Wang YS, Dai JG, Wang L, Tsang DC, Poon CS (2018) Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere 190:90–96

    Article  CAS  PubMed  Google Scholar 

  • Wu YJ, Zhou H, Zou ZJ, Zhu W, Yang WT, Peng PQ, Liao BH (2016) A three-year in-situ study on the persistence of a combined amendment (limestone+ sepiolite) for remedying paddy soil polluted with heavy metals. Ecotoxicol Environ Saf 130:163–170

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011, Article ID 402647

    Google Scholar 

  • Xu B, Ma H, Li Z (2015) Influence of magnesia-to-phosphate molar ratio on microstructures, mechanical properties and thermal conductivity of magnesium potassium phosphate cement paste with large water-to-solid ratio. Cem Concr Res 68:1–9

    Article  CAS  Google Scholar 

  • Xu Y, Liang X, Wang L, Sun Y, Huang Q (2018) Stability and universal applicability of immobilization effect of sepiolite on cadmium in acid paddy soil. In: Luo Y, Tu C (eds) Twenty years of research and development on soil pollution and remediation in China. Springer, pp 399–411

    Google Scholar 

  • Xu C, Qi J, Yang W, Chen Y, Yang C, He Y, Lin A (2019) Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Sci Total Environ 686:476–483

    Article  CAS  PubMed  Google Scholar 

  • Yadav VB, Gadi R, Kalra S (2019) Clay based nanocomposites for removal of heavy metals from water: a review. J Environ Manag 232:803–817

    Article  CAS  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Yi X, Xuefeng L, Yingming X, Xu Q, Qingqing H, Lin W, Yuebing S (2017) Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 27(2):193–204

    Article  CAS  Google Scholar 

  • Yuan GD, Theng BKG, Churchman GJ, Gates WP (2013) Clays and clay minerals for pollution control. Dev Clay Sci 5:587–644

    Article  CAS  Google Scholar 

  • Yeung AT, Gu YY (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Wan J, Huang D, Hu L, Huang C, Cheng M, Jiang D (2017) Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils—a review. J Hazard Mater 339:354–367

    Google Scholar 

  • Zeng X, Xiao Z, Zhang G, Wang A, Li Z, Liu Y, Zou D (2018) Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures. J Anal Appl Pyrolysis 132:82–93

    Article  CAS  Google Scholar 

  • Zhan F, Zeng W, Yuan X, Li B, Li T, Zu Y, Li Y (2019) Field experiment on the effects of sepiolite and biochar on the remediation of cd-and Pb-polluted farmlands around a Pb–Zn mine in Yunnan Province, China. Environ Sci Pollut Res 26(8):7743–7751

    Article  CAS  Google Scholar 

  • Zhang G, Lin Y, Wang M (2011) Remediation of copper polluted red soils with clay materials. J Environ Sci 23:461–467

    Article  CAS  Google Scholar 

  • Zhou DM, Hao XZ, Xue Y, Cang L, Wang YJ, Chen HM (2004) Advances in remediation technologies of contaminated soils. Ecol Environ Sci 13(2):234–242

    Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR, Fang J, Sun Y, Cao X (2013) Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem Eng J 231:512–518

    Article  CAS  Google Scholar 

  • Zibaei Z, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S (2020) Improvement of biochar capability in Cr immobilization via modification with chitosan and hematite and inoculation with Pseudomonas putida. Commun Soil Sci Plant Anal:1–13

    Google Scholar 

  • Žibret G, Van Tonder D, Žibret L (2013) Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic. Environ Sci Pollut Res 20(7):4455–4468

    Article  CAS  Google Scholar 

  • Zotiadis V, Argyraki A, Theologou E (2012) Pilot-scale application of attapulgitic clay for stabilization of toxic elements in contaminated soil. J Geotech Geoenviron 138:633–637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tauqeer, H.M. et al. (2021). The Current Scenario and Prospects of Immobilization Remediation Technique for the Management of Heavy Metals Contaminated Soils. In: Hasanuzzaman, M. (eds) Approaches to the Remediation of Inorganic Pollutants. Springer, Singapore. https://doi.org/10.1007/978-981-15-6221-1_8

Download citation

Publish with us

Policies and ethics