Skip to main content

Computed Tomography Image Reconstruction Using Fuzzy Complex Diffusion Regularization

  • Conference paper
  • First Online:
Innovations in Computational Intelligence and Computer Vision

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1189))

  • 848 Accesses

Abstract

Computed tomography (CT) is one of the most efficient clinical diagnostic tools. The main goal of CT is to reproduce an acceptable reconstructed image of an object (either anatomical or functional behavior) with the help of limited set of its projections at different angles. To achieve this goal, one of the most commonly iterative reconstruction algorithm called as maximum likelihood expectation maximization (MLEM) is used. The conventional maximum likelihood (ML) algorithm can achieve quality images in CT. However, it still suffers from the optimal smoothing as the number of iteration increases. This paper presents a novel statistical image reconstruction algorithm for CT, which utilizes a fuzzy nonlinear complex diffusion as a regularization term for noise reduction and edge preservation. A proposed model has been evaluated on two simulates test case phantoms. Qualitative and quantitative analyses indicate that the proposed technique has higher efficiency for computed tomography when compared with the state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.R. Deans, The Radon Transform and Some of Its Applications (Courier Corporation, 2007)

    Google Scholar 

  2. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, Philadelphia, 2001)

    Book  Google Scholar 

  3. M. Dehairs, H. Bosmans, W. Desmet, N. Marshall, Evaluation of automatic dose rate control for flat panel imaging using a spatial frequency domain figure of merit. Phys. Med. Biol. 62(16), 6610 (2017)

    Article  Google Scholar 

  4. P. Nowik, R. Bujila, L. Kull, J. Andersson, G. Poludniowski, The dosimetric impact of including the patient table in CT dose estimates. Phys. Med. Biol. 62(23), N538 (2017)

    Article  Google Scholar 

  5. D.J. Brenner, C.D. Elliston, E.J. Hall, W.E. Berdon, Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am. J. Roentgenol. 176(2), 289–296 (2001)

    Article  Google Scholar 

  6. A.S. Brody, D.P. Frush, W. Huda, R.L. Brent, Radiation risk to children from computed tomography. Pediatrics 120(3), 677–682 (2007)

    Article  Google Scholar 

  7. N. Saltybaeva, K. Martini, T. Frauenfelder, H. Alkadhi, Organ dose and attributable cancer risk in lung cancer screening with low-dose computed tomography. PLoS ONE 11(5), e0155722 (2016)

    Article  Google Scholar 

  8. A.M. Den Harder, D. Sucha, P.J. Van Doormaal, R.P. Budde, P.A. de Jong, A.M. Schilham et al., Radiation dose reduction in pediatric great vessel stent computed tomography using iterative reconstruction: a phantom study. PLoS One. 12(4), e0175714 (2017)

    Article  Google Scholar 

  9. C. Gong, C. Han, G. Gan, Z. Deng, Y. Zhou, J. Yi et al., Low-dose dynamic myocardial perfusion CT image reconstruction using pre-contrast normal-dose CT scan induced structure tensor total variation regularization. Phys. Med. Biol. 62(7), 2612 (2017)

    Article  Google Scholar 

  10. H. Han, H. Gao, L. Xing, Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation. Phys. Med. Biol. 62(16), 6408 (2017)

    Article  Google Scholar 

  11. Y. Vardi, L.A. Shepp, L. Kaufman, A statistical model for positron emission. J. Am. Stat. Assoc. 80(389), 8–20 (1985)

    Article  MathSciNet  Google Scholar 

  12. P.J. Green, Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9(1), 84–93 (1990)

    Article  Google Scholar 

  13. H.M. Hudson, R.S. Larkin, Ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  Google Scholar 

  14. I.T. Hsiao, H.M. Huang, An accelerated ordered subsets reconstruction algorithm using an accelerating power factor for emission tomography. Phys. Med. Biol. 55(3), 599–614 (2010)

    Article  Google Scholar 

  15. R. Gordon, R. Bender, G.T. Herman, Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)

    Article  Google Scholar 

  16. S. Gordic, L. Desbiolles, P. Stolzmann, L. Gantner, Advanced modelled iterative reconstruction for abdominal CT: qualitative and quantitative evaluation. Clin. Radio. 69(12), e497–e504 (2014)

    Article  Google Scholar 

  17. P. Perona, J. Malik, Scale-space and edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  18. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  19. A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising. IEEE Comput. Vis. Pattern Recogn. 2, 60–65 (2005)

    MATH  Google Scholar 

  20. H. Ling, A.C. Bovik, Smoothing low-SNR molecular images via anisotropic median-diffusion. IEEE Trans. Med. Imaging 21(4), 377–384 (2002)

    Article  Google Scholar 

  21. G. Gilboa, Y.Y. Zeevi, N.A. Sochen, Complex diffusion processes for image filtering. Scale-sp. Morphol. Comput. Vis. pp. 299–307 (2001)

    Google Scholar 

  22. J.H. Yan, Investigation of Positron Emission Tomography Image Reconstruction (Huazhong University of Science & Technology, Wuhan, China, 2007)

    Google Scholar 

  23. Q. He, L. Huang, Penalized maximum likelihood algorithm for positron emission tomography by using anisotropic median-diffusion. Math. Prob. Eng. 2014 (2014)

    Google Scholar 

  24. D. Van De Ville et al., Noise reduction by fuzzy image filtering. 11(4), 429–436 (2003)

    Google Scholar 

  25. D. Van De Ville, W. Philips, I. Lemahieu, Fuzzy Techniques in Image Processing (Springer, New York, 2000), vol. 52, Studies in Fuzziness and Soft Computing, ch. Fuzzy-based motion detection and its application to de-interlacing, pp. 337–369

    Google Scholar 

  26. B. Reusch, M. Fathi, L. Hildebrand, Soft Computing, Multimedia and Image Processing—Proceedings of the World Automation Congress (TSI Press, Albuquerque, NM, 1998), ch. Fuzzy Color Processing for Quality Improvement, pp. 841–848

    Google Scholar 

  27. S. Bothorel, B. Bouchon, S. Muller, A fuzzy logic-based approach for semiological analysis of microcalcification in mammographic images. Int. J. Intell. Syst. 12, 819–843 (1997)

    Article  Google Scholar 

  28. P.P. Modal, K. Rajan, Iterative image reconstruction for emission tomography using fuzzy potential, in Nuclear Science Symposium Conference Record, IEEE, Roma, Italy, 2004, pp. 3616–3619

    Google Scholar 

  29. S. Tiwari, K. Kaur, Y. Pathak, S. Shivani, K. Kaur, Computed tomography reconstruction on distributed storage using hybrid regularization approach. Mod. Phys. Lett. B 33(06), 1950063 (2019)

    Article  Google Scholar 

  30. Y. Pathak, K.V. Arya, S. Tiwari, Fourth-order partial differential equations based anisotropic diffusion model for low-dose CT images. Mod. Phys. Lett. B 32(25), 1850300 (2018)

    Article  MathSciNet  Google Scholar 

  31. S. Manoj, A survey of thresholding techniques over images 3(2), 461–478 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devi, M., Singh, S., Tiwari, S. (2021). Computed Tomography Image Reconstruction Using Fuzzy Complex Diffusion Regularization. In: Sharma, M.K., Dhaka, V.S., Perumal, T., Dey, N., Tavares, J.M.R.S. (eds) Innovations in Computational Intelligence and Computer Vision. Advances in Intelligent Systems and Computing, vol 1189. Springer, Singapore. https://doi.org/10.1007/978-981-15-6067-5_24

Download citation

Publish with us

Policies and ethics