Skip to main content

Low-Dose CT Image Reconstruction Using Complex Diffusion Regularization

  • Conference paper
  • First Online:
Computational Intelligence: Theories, Applications and Future Directions - Volume II

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 799))

  • 491 Accesses

Abstract

The computed tomography (CT) is considered as a significant imaging tool for the clinical diagnosis. Due to the low-dose radiation in the CT, the projection data is highly affected by the Gaussian noise. Thus, there is a demand of a framework that can eliminate the noise and provide high-quality images. This paper presents a new statistical image reconstruction algorithm by proposing a suitable regularization method. The proposed framework is the combination of two basic terms, namely data fidelity and regularization. Minimizing the log-likelihood gives data fidelity term, which represents the distribution of noise in low-dose X-ray CT images. Maximum likelihood expectation maximization algorithm is introduced as a data fidelity term. The ill-posedness problem of data fidelity term is overcome with the help of complex diffusion filter. It is introduced as regularization term into the proposed framework that minimizes the noise without blurring edges and preserving the fine structure information into the reconstructed image. The proposed model has been evaluated on both simulated and real standard thorax phantoms. The final results are compared with the various other methods, and it is analyzed that the proposed model has many desirable properties such as better noise robustness, less computational cost, enhanced denoising effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, H., Wang, J., Ma, J., Lu, H., Liang, Z.: Statistical models and regularization strategies in statistical image reconstruction of low-dose X-ray computed tomography: a survey. In: IRIS Laboratory, Department of Radiology, Stony Brook University. arXiv:1412.1732 (2014)

  2. Devaney, J.: Filtered backpropagation algorithm for diffraction tomography. Ultrason. Imaging 4(3), 336–350 (1982). https://doi.org/10.1016/0161-7346(82)90017-7

    Article  Google Scholar 

  3. Green, P.G.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9(1), 84–93 (1990). https://doi.org/10.1109/42.52985

    Article  Google Scholar 

  4. Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission. J. Am. Stat. Assoc. 80(389), 8–20 (1985). https://doi.org/10.2307/2288030

    Article  MathSciNet  MATH  Google Scholar 

  5. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994). https://doi.org/10.1109/42.363108

    Article  Google Scholar 

  6. Browne, J., De Pierro, A.B.: A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography. IEEE Trans. Med. Imaging 15(5), 687–699 (1996). https://doi.org/10.1109/42.538946

    Article  Google Scholar 

  7. Hsiao, T., Huang, H.M.: An accelerated ordered subsets reconstruction algorithm using an accelerating power factor for emission tomography. Phys. Med. Biol. 55(3), 599 (2010). https://doi.org/10.1088/0031-9155/55/3/003

  8. Lee, S., Kwon, H., Cho, J.: The detection of focal liver lesions using abdominal CT: a comparison of image quality between adaptive statistical iterative reconstruction V and adaptive statistical iterative reconstruction. Acad. Radiol. 23(12), 1532–1538 (2016). https://doi.org/10.1016/j.acra.2016.08.013

    Article  Google Scholar 

  9. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–476 (1970). https://doi.org/10.1016/0022-5193(70)90109-8

    Article  Google Scholar 

  10. Geyer, L.L., Schoepf, U.G., Meinel, F.G., Nance Jr., J.W.: State of the art: iterative CT reconstruction techniques. Radiology 276(2), 339–357 (2015). https://doi.org/10.1148/radiol.2015132766

    Article  Google Scholar 

  11. Gordic, S., Desbiolles, L., Stolzmann, P., Gantner, L.: Advanced modelled iterative reconstruction for abdominal CT: qualitative and quantitative evaluation. Clin. Radiol. 69(12), e497–e504 (2014). https://doi.org/10.1016/j.crad.2014.08.012

    Article  Google Scholar 

  12. Levitan, E., Herman, G.T.: A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Trans. Med. Imaging 6(3), 185–192 (1987). https://doi.org/10.1109/TMI.1987.4307826

    Article  Google Scholar 

  13. Denisova, N.V.: Bayesian reconstruction in SPECT with entropy prior and iterative statistical regularization. IEEE Trans. Nucl. Sci. 51(1), 136–141 (2004). https://doi.org/10.1109/TNS.2003.823059

    Article  Google Scholar 

  14. Perona, P., Malik, J.: Scale-space and edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). https://doi.org/10.1109/34.56205

    Article  Google Scholar 

  15. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based. Phys. D 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  16. Ling, H., Bovik, A.C.: Smoothing low-SNR molecular image via anisotropic median-diffusion. IEEE Trans. Med. Imaging 21(4), 377–384 (2002). https://doi.org/10.1109/TMI.2002.1000261

    Article  Google Scholar 

  17. Gilboa, G., Zeevi, Y.Y., Sochen, N.A.: Complex diffusion processes for image filtering. In: Third International Conference on Scale-Space and Morphology in Computer Vision, Scale-Space 2001, Vancouver, Canada (2001). https://doi.org/10.1007/3-540-47778-0

  18. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. IEEE Comput. Vis. Pattern Recogn. 2, 60–65 (2005). https://doi.org/10.1109/CVPR.2005.38

    Article  MATH  Google Scholar 

  19. Yan, J.H.: Investigation of positron emission tomography image reconstruction. Huazhong University of Science & Technology, Wuhan, China (2007)

    Google Scholar 

  20. He, Q., Huang, L.: Penalized maximum likelihood algorithm for positron emission tomography by using anisotropic median-diffusion. Math. Probl. Eng. Hindawi 2014, 1–7 (2014). https://doi.org/10.1155/2014/491239

    Article  Google Scholar 

  21. Chávez-Rivera, L.B., Ortega-Máynez, L., Mejía, J., Mederos, B.: ML-EM reconstruction model including total variation for low dose PET high resolution data. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015 IEEE, San Diego (2015). https://doi.org/10.1109/nssmic.2015.7582221

  22. Zhang, H., Ma, J., Liu, Y., Han, H., Li, L., Wang, J., Liang, Z.: Nonlocal means-based regularizations for statistical CT reconstruction. In Proceedings of SPIE 9033, Medical Imaging 2014: Physics of Medical Imaging, 903337, San Diego (2014). https://doi.org/10.1117/12.2043949

  23. Tiwari, S., Srivastava, R.: A hybrid-cascaded iterative framework for positron emission tomography and single-photon emission computed tomography image reconstruction. J. Med. Imaging Health Inf. 6(8), 1–12 (2016). https://doi.org/10.1166/jmihi.2016.1779

    Article  Google Scholar 

  24. Liu, Y., Ma, J., Fan, Y., Liang, Z.: Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction. Phys. Med. Biol. 57(23), 7923 (2012). https://doi.org/10.1088/0031-9155/57/23/7923

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavkirat Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, K., Tiwari, S. (2019). Low-Dose CT Image Reconstruction Using Complex Diffusion Regularization. In: Verma, N., Ghosh, A. (eds) Computational Intelligence: Theories, Applications and Future Directions - Volume II. Advances in Intelligent Systems and Computing, vol 799. Springer, Singapore. https://doi.org/10.1007/978-981-13-1135-2_50

Download citation

Publish with us

Policies and ethics