Skip to main content

Transient Numerical Model for Natural Convection Flow in Flat Plate Solar Collector

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Advances in Energy Research

Abstract

Natural convection flow in the annulus air gap of a flat plate solar collector constitutes the majority of heat losses in the solar collector. Here we report the development of a numerical model to simulate the transient behaviour of natural convection flow in the solar collector. The model is validated against benchmark results available in the literature, i.e. Vahl Davis et al. [17] and Samdarshi et al. [18]. An error of less than 13% is observed for the top heat loss coefficient parameter of flat plate solar collector in comparison with these benchmark results. We report the natural convection flow for a particular case to evaluate the ability of the transient model to simulate the natural convection flow. Various structural and material parameters of the solar collector could be optimized using this transient model

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ar:

Aspect ratio (L/H)

Bi:

Biot number

C p :

Specific heat capacity

g :

Gravitational force

Gr:

Grashof number

h :

Convective heat transfer coefficient

H :

Height of respective domain

L :

Length of enclosure

K :

Thermal conductivity

K Φ :

Diffusion coefficient

n :

Time step

N :

Number of tubes

Nu:

Nusselt number

p :

Pressure

Pr:

Prandtl number

q”:

Heat flux (W/m2)

Q :

Non-dimensional Heat flux

R :

Residual

Ra:

Rayleigh number

S Φ :

Transport equation source term

t :

Time

T :

Temperature

\( \vec{u} \) :

Velocity vector

u, v:

Velocity components

\( \vec{U} \) :

Non-dimensional velocity

U, V:

Non-dimensional velocity components

x, y:

Coordinates

X, Y:

Non-dimensional coordinates

α :

Thermal diffusivity

β :

Thermal expansion coefficient

γ :

Angle of inclination of enclosure

ε :

Numerical tolerance limit

θ :

Non-dimensional temperature

ν :

Kinematic viscosity

ρ :

Density

τ :

Non-dimensional time

ψ :

Stream function

Ψ:

Non-dimensional stream function

ω :

Vorticity

Ω:

Non-dimensional vorticity

Φ:

General conservation variable

2:

Laplacian operator

\( \Theta \) :

Order of discretization

o :

Reference condition

amb:

Ambient

f :

Fluid

fp :

Fluid to plate

fg :

Fluid to glass

g :

Glass

p :

Plate

S :

Solar

t :

Tube

w :

Water

References

  1. Duffie, J.A., Beckman, W.A.: Solar engineering of thermal processes. Wiley, Hoboken, NJ (2013)

    Book  Google Scholar 

  2. Smith, J.G.: Comparison of transient models for flat-plates and trough concentrators. J. Sol.Energy Eng. 108(4), 341 (1986). https://doi.org/10.1115/1.3268117

    Article  Google Scholar 

  3. Tagliafico, L.A., Scarpa, F., De Rosa, M.: Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors—a review. Renew. Sustain. Energy Rev. 30, 526–537 (2014). https://doi.org/10.1016/j.rser.2013.10.023

    Article  Google Scholar 

  4. Close, D.: A design approach for solar processes. Sol. Energy 11(2), 112–122 (1967). https://doi.org/10.1016/0038-092x(67)90051-5

    Article  Google Scholar 

  5. Klein, S.: Calculation of flat-plate collector loss coefficients. Sol. Energy 17(1), 79–80 (1975). https://doi.org/10.1016/0038-092x(75)90020-1

    Article  Google Scholar 

  6. Morrison, G., Ranatunga, D.: Transient response of thermosyphon solar collectors. Sol. Energy 24(1), 55–61 (1980). https://doi.org/10.1016/0038-092x(80)90020-1

    Article  Google Scholar 

  7. Oliva, A., Costa, M., Segarra, C.: Numerical simulation of solar collectors: the effect of nonuniform and nonsteady state of the boundary conditions. Sol. Energy 47(5), 359–373 (1991). https://doi.org/10.1016/0038-092x(91)90030-z

    Article  Google Scholar 

  8. Ouzzane, M., Galanis, N.: Numerical Analysis Of Mixed Convection In Inclined Tubes With External Longitudinal Fins. Sol. Energy 71(3), 199–211 (2001). https://doi.org/10.1016/s0038-092x(01)00030-5

    Article  Google Scholar 

  9. Ramírez-Minguela, J., Alfaro-Ayala, J., Rangel-Hernández, V., Uribe-Ramírez, A., Mendoza-Miranda, J., Pérez-García, V., Belman-Flores, J.: Comparison of the thermo-hydraulic performance and the entropy generation rate for two types of low temperature solar collectors using CFD. Sol. Energy 166, 123–137 (2018). https://doi.org/10.1016/j.solener.2018.03.050

    Article  Google Scholar 

  10. Allan, J., Dehouche, Z., Stankovice, S., Harries, A.: Computational fluid dynamics simulation and experimental study of key design parameters of solar thermal collectors. J. Sol. Energy Eng. 139(5), 051001 (2017). https://doi.org/10.1115/1.4037090

    Article  Google Scholar 

  11. Cerón, J., Pérez-García, J., Solano, J., García, A., Herrero-Martín, R.: A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms. Appl. Energy 140, 275–287 (2015). https://doi.org/10.1016/j.apenergy.2014.11.069

    Article  Google Scholar 

  12. Jiandong, Z., Hanzhong, T., Susu, C.: Numerical simulation for structural parameters of flat-plate solar collector. Sol. Energy 117, 192–202 (2015). https://doi.org/10.1016/j.solener.2015.04.027

    Article  Google Scholar 

  13. Dović, D., Andrassy, M.: Numerically assisted analysis of flat and corrugated plate solar collector thermal performance. Sol. Energy, 86(9), 2416–2431 (2012). https://doi.org/10.1016/j.solener.2012.05.016

  14. Allan, J., Shah, L.J., Furbo, S.: Flow distribution in a solar collector panel with horizontally inclined absorber strips. Sol. Energy 81(12), 1501–1511 (2007). https://doi.org/10.1016/j.solener.2007.02.001

    Article  Google Scholar 

  15. Martinopoulos, G., Missirlis, D., Tsilingiridis, G., Yakinthos, K., Kyriakis, N.: CFD modeling of a polymer solar collector. Renew. Energy 35(7), 1499–1508 (2010). https://doi.org/10.1016/j.renene.2010.01.004

    Article  Google Scholar 

  16. Selmi, M., Al-Khawaja, M.J., Marafia, A.: Validation of CFD simulation for flat plate solar energy collector. Renew. Energy 33(3), 383–387 (2008). https://doi.org/10.1016/j.renene.2007.02.003

    Article  Google Scholar 

  17. De Vahl Davis, G.: Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Meth. Fluids 3(3), 249–264 (1983). https://doi.org/10.1002/fld.1650030305

    Article  MATH  Google Scholar 

  18. Samdarshi, S.K., Mullick, S.C.: Analysis of the top heat loss factor of flat plate solar collectors with single and double glazing. Int. J. Energy Res. 14(9), 975–990 (1990). https://doi.org/10.1002/er.4440140908

    Article  Google Scholar 

  19. Subiantoro, A., Ooi, K.T.: Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing. Appl. Energy 104, 392–399 (2013). https://doi.org/10.1016/j.apenergy.2012.11.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagesh B. Balam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balam, N.B., Alam, T., Gupta, A. (2021). Transient Numerical Model for Natural Convection Flow in Flat Plate Solar Collector. In: Bose, M., Modi, A. (eds) Proceedings of the 7th International Conference on Advances in Energy Research. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5955-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5955-6_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5954-9

  • Online ISBN: 978-981-15-5955-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics