Skip to main content

Wastewater Treatment Techniques: An Introduction

  • Chapter
  • First Online:
Removal of Emerging Contaminants Through Microbial Processes

Abstract

Currently, the world is facing water quality crisis resulting from land use changes, industrialization, agricultural practices, sewerage, and poor wastewater management practices. Wastewater comprises a combination of one or more of domestic effluent, industrial effluent, agricultural runoff, and water from commercial establishment and institution including hospitals. Untreated wastewater released into the environment can cause health and environmental problem and can have an economic impact. Wastewater treatment process is used worldwide for removal of existing contamination before reuse or disposal into the environment. In this article, various wastewater treatment techniques, basic fundamentals, and their consequent pollutants removal are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adav SS, Lee DJ, Show KY, Tay JH (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26(5):411–423

    Article  CAS  PubMed  Google Scholar 

  • Alsabagh AM, Hassan ME, Desouky SEM, Nasser NM, Elsharaky EA, Abdelhamid MM (2016) Demulsification of W/O emulsion at petroleum field and reservoir conditions using some demulsifiers based on polyethylene and propylene oxides. Egypt J Pet 25(4):585–595

    Article  Google Scholar 

  • Alvarez PJ, Illman WA (2005) Bioremediation and natural attenuation: process fundamentals and mathematical models. Wiley, Hoboken

    Book  Google Scholar 

  • Ashrafi O, Yerushalmi L, Haghighat F (2015) Wastewater treatment in the pulp-and-paper industry: a review of treatment processes and the associated greenhouse gas emission. J Environ Manag 158:146–157

    Article  CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28(1):64–70

    Article  Google Scholar 

  • Bal AS, Dhagat NN (2001) Upflow anaerobic sludge blanket reactor a review. Indian J Environ Health 43(2):1–82

    CAS  PubMed  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Barupal T, Chittora D, Meena M (2019) Solid waste: characterization, assessment, monitoring, and remediation. In: Singh RP, Prasad V, Vaish B (eds) Advances in waste-to-energy technologies. Taylor & Francis/CRC Press, Boca Raton, FL, pp 01–19

    Google Scholar 

  • Berefield LD, Judkins JF, Weand BL (1982) Process chemistry for water and wastewater treatment. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Beun JJ, Van Loosdrecht MCM, Heijnen JJ (2002) Aerobic granulation in a sequencing batch airlift reactor. Water Res 36(3):702–712

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Datta S, Bhattacharjee C (2007) Improvement of wastewater quality parameters by sedimentation followed by tertiary treatments. Desalination 212(1–3):92–102

    Article  CAS  Google Scholar 

  • Bitton G (2005) Wastewater microbiology. Wiley, Hoboken

    Book  Google Scholar 

  • Brown JL (2012) Fuel cells treat wastewater, generate electricity. Civ Eng Mag Arch 82(7):34–35

    Article  Google Scholar 

  • Caluwé M, Dobbeleers T, D’aes J, Miele S, Akkermans V, Daens D, Dries J (2017) Formation of aerobic granular sludge during the treatment of petrochemical wastewater. Bioresour Technol 238:559–567

    Article  PubMed  Google Scholar 

  • Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J 155(1–2):1–18

    Article  CAS  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41

    Article  Google Scholar 

  • Clifford DA (1991) Ion exchange and in organic adsorption. In: Pontius FW (ed) Water quality and treatment, 4th edn. American Water Works Association/McGraw Hill, New York

    Google Scholar 

  • Cox M, Négré P, Yurramendi L (2007) Industrial liquid effluents. Inasmet Tecnalia, San Sebastian, p 283

    Google Scholar 

  • Crini G, Badot PM (2007) Traitement et épuration des eaux industrielles polluées. PUFC, Besançon, p 353

    Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155

    Article  CAS  Google Scholar 

  • Czarnitzki D, Hussinger K, Schneider C (2015) R & D collaboration with uncertain intellectual property rights. Rev Ind Organ 46(2):183–204

    Google Scholar 

  • Del Pozo R, Diez V (2003) Organic matter removal in combined anaerobic–aerobic fixed-film bioreactors. Water Res 37(15):3561–3568

    Article  PubMed  Google Scholar 

  • Deliyanni EA, Kyzas GZ, Matis KA (2017) Various flotation techniques for metal ions removal. J Mol Liq 225:260–264

    Article  CAS  Google Scholar 

  • Derco J, Vrana B (2018) Introductory chapter: biosorption. In: Biosorption. InTechOpen, London. https://doi.org/10.5772/intechopen.78961

    Chapter  Google Scholar 

  • Dhaouadi H, Marrot B (2008) Olive mill wastewater treatment in a membrane bioreactor: process feasibility and performances. Chem Eng J 145(2):225–231

    Article  CAS  Google Scholar 

  • Dhoble YN, Ahmed S (2018) Sustainability of wastewater treatment in subtropical region: aerobic vs anaerobic process. Int J Eng Res Dev 14(1):2278–2267

    Google Scholar 

  • Djenouhat M, Hamdaoui O, Chiha M, Samar MH (2008) Ultrasonication-assisted preparation of water-in-oil emulsions and application to the removal of cationic dyes from water by emulsion liquid membrane: part 1: membrane stability. Sep Purif Technol 62(3):636–641

    Article  CAS  Google Scholar 

  • Do MH, Ngo HH, Guo WS, Liu Y, Chang SW, Nguyen DD, Ni BJ (2018) Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci Total Environ 639:910–920

    Article  CAS  PubMed  Google Scholar 

  • El-Ashtoukhy ES, Amin NK, Bdelwahab O (2009) Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor. Chem Eng J 146(2):205–210

    Article  CAS  Google Scholar 

  • Ferrera I, Sanchez O (2016) Insights into microbial diversity in wastewater treatment systems: how far have we come? Biotechnol Adv 34(5):790–802

    Article  CAS  PubMed  Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–971

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves AL, Pires JC, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • Goyal RK, Jayakumar NS, Hashim MA (2011) Chromium removal by emulsion liquid membrane using [BMIM]+[NTf2]− as stabilizer and TOMAC as extractant. Desalination 278(1–3):50–56

    Article  CAS  Google Scholar 

  • Gude VG (2016) Wastewater treatment in microbial fuel cells–an overview. J Clean Prod 122:287–307

    Article  CAS  Google Scholar 

  • Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37(4):315–377

    Article  CAS  Google Scholar 

  • Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner AR, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9(1):29–47

    Article  CAS  Google Scholar 

  • Hasan HA, Abdullah SRS, Al-Attabi AWN, Nash DAH, Anuar N, Rahman NA, Titah HS (2016) Removal of ibuprofen, ketoprofen, COD and nitrogen compounds from pharmaceutical wastewater using aerobic suspension-sequencing batch reactor (ASSBR). Sep Purif Technol 157:215–221

    Article  Google Scholar 

  • He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262–5267

    Article  CAS  PubMed  Google Scholar 

  • Henze M, Comeau Y (2008) Wastewater characterization. In: Biological wastewater treatment: principles modelling and design. IWA Publication, London, pp 33–52

    Chapter  Google Scholar 

  • Hernández-Flores G, Poggi-Varaldo HM, Solorza-Feria O, Ponce-Noyola MT, Romero-Castañón T, Rinderknecht-Seijas N, Galíndez-Maye J (2015) Characteristics of a single chamber microbial fuel cell equipped with a low cost membrane. Int J Hydrogen Energy 40(48):17380–17387

    Article  Google Scholar 

  • Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366

    Article  CAS  Google Scholar 

  • Hussein MA, Mohammed AA, Atiya MA (2019) Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment: an overview. Environ Sci Pollut Res 26:1–21. https://doi.org/10.1007/s11356-019-06652-3

    Article  CAS  Google Scholar 

  • Ibrahim Z, Amin MFM, Yahya A, Aris A, Muda K (2010) Characteristics of developed granules containing selected decolourising bacteria for the degradation of textile wastewater. Water Sci Technol 61(5):1279–1288

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL, Running SW (2001) Water in a changing world. Ecol Appl 11(4):1027–1045

    Article  Google Scholar 

  • Kassab G, Halalsheh M, Klapwijk A, Fayyad M, Van Lier JB (2010) Sequential anaerobic–aerobic treatment for domestic wastewater–a review. Bioresour Technol 101(10):3299–3310

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Yoo C, Lee IB (2008) Optimization of biological nutrient removal in a SBR using simulation-based iterative dynamic programming. Chem Eng J 139(1):11–19

    Article  CAS  Google Scholar 

  • Kishimoto N, Nakagawa T, Okada H, Mizutani H (2010) Treatment of paper and pulp mill wastewater by ozonation combined with electrolysis. J Water Environ Technol 8(2):99–109

    Article  Google Scholar 

  • Li NN (1968) U.S. Patent No. 3,410,794. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Li YM, Gu GW, Zhao JF, Yu HQ, Qiu YL, Peng YZ (2003) Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen. Chemosphere 52(6):997–1005

    Article  CAS  PubMed  Google Scholar 

  • Liu DHF, Liptak BG (eds) (2000) Wastewater treatment. CRC Press, Boca Raton

    Google Scholar 

  • Liu XC, Yang M, Zhang Y, Yang XP, Gan YP (2007) Microbial community comparison of different biological processes for treating the same sewage. World J Microbiol Biotechnol 23(1):135–143

    Article  Google Scholar 

  • Liu Y, Kang X, Li X, Yuan Y (2015) Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment. Bioresour Technol 190:487–491

    Article  CAS  PubMed  Google Scholar 

  • Maine MA, Suñe N, Hadad H, Sánchez G, Bonetto C (2005) Phosphate and metal retention in a small-scale constructed wetland for waste-water treatment. In: Golterman HL, Serrano L (eds) Phosphate in sediment. Proceedings 4th international symposium on phosphate in sediments. Backhuys, Leiden, pp 21–32

    Google Scholar 

  • Maine MA, Sune N, Hadad H, Sánchez G, Bonetto C (2006) Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecol Eng 26(4):341–347

    Article  Google Scholar 

  • Mook WT, Chakrabarti MH, Aroua MK, Khan GMA, Ali BS, Islam MS, Yongzhen P, Hongxun H, Shuying W, Youwei C, Zhiguo Y (2008) Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system. J Environ Sci 20(4):398–403

    Article  Google Scholar 

  • Moon H, Chang IS, Jang JK, Kim BH (2005) Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem Eng J 27(1):59–65

    Article  CAS  Google Scholar 

  • Moosai R, Dawe RA (2003) Gas attachment of oil droplets for gas flotation for oily wastewater cleanup. Sep Purif Technol 33(3):303–314

    Article  CAS  Google Scholar 

  • Morin-Crini N, Crini G (eds) (2017) Eaux industrielles contaminées. PUFC, Besançon

    Google Scholar 

  • Nähle C (1991) The contact process for the anaerobic treatment of wastewater: technology, design and experiences. Water Sci Technol 24(8):179–191

    Article  Google Scholar 

  • Pal P (2017) Industrial water treatment process technology. Butterworth-Heinemann, Cambridge

    Google Scholar 

  • Patwardhan AW (2003) Rotating biological contactors: a review. Ind Eng Chem Res 42(10):2035–2051

    Article  CAS  Google Scholar 

  • Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54(3):745–756

    Article  Google Scholar 

  • Ramadan BS, Purwono (2017) Challenges and opportunities of microbial fuel cells (MFCs) technology development in Indonesia. In: MATEC Web of Conferences, EDP Sciences, 101:02018, pp 1–5

    Google Scholar 

  • Rathoure AK, Dhatwalia VK (eds) (2016) Toxicity and waste management using bioremediation. Hershey, PA: IGI Global, Engineering Science Reference, p 425

    Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  CAS  Google Scholar 

  • Reemtsma T, Weiss S, Mueller J, Petrovic M, González S, Barcelo D, Knepper TP (2006) Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environ Sci Technol 40(17):5451–5458

    Article  CAS  PubMed  Google Scholar 

  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS (2013) Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol 25(5):1529–1537

    Article  CAS  Google Scholar 

  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizz L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    Article  Google Scholar 

  • Rudakova LV, Sakaeva EH (2019) Quality assessment of activated sludge biological treatment pulp and paper plant with variable load. In: IOP conference series: earth and environmental science, vol 321. IOP Publishing, 1, p 012048

    Google Scholar 

  • Ruiz J, Arbib Z, Álvarez-Díaz PD, Garrido-Pérez C, Barragán J, Perales JA (2013) Photobiotreatment model (PhBT): a kinetic model for microalgae biomass growth and nutrient removal in wastewater. Environ Technol 34(8):979–991

    Article  CAS  PubMed  Google Scholar 

  • Saki S, Uzal N (2018) Preparation and characterization of PSF/PEI/CaCO3 nanocomposite membranes for oil/water separation. Environ Sci Pollut Res 25(25):25315–25326

    Article  CAS  Google Scholar 

  • Samer M (ed) (2015) Biological and chemical wastewater treatment processes. In: Wastewater treatment engineering, pp 1–50

    Google Scholar 

  • Sarma SJ, Tay JH, Chu A (2017) Finding knowledge gaps in aerobic granulation technology. Trends Biotechnol 35(1):66–78

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077

    Article  CAS  PubMed  Google Scholar 

  • Seow TW, Lim CK, Nor MHM, Mubarak MFM, Lam CY, Yahya A, Ibrahim Z (2016) Review on wastewater treatment technologies. Int J Appl Environ Sci 11:111–126

    Google Scholar 

  • Shammas NK, Wang LK (2009) Oxidation ditch. In: Biological treatment processes. Humana Press, Totowa, pp 513–538

    Chapter  Google Scholar 

  • Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind Eng Chem Res 55(16):4363–4389

    Article  CAS  Google Scholar 

  • Topare NS, Attar SJ, Manfe MM (2011) Sewage/wastewater treatment technologies: a review. Sci Rev Chem Commun 1:18–24

    Google Scholar 

  • Ueda T, Horan NJ (2000) Fate of indigenous bacteriophage in a membrane bioreactor. Water Res 34(7):2151–2159

    Article  CAS  Google Scholar 

  • Visvanathan C, Abeynayaka A (2012) Developments and future potentials of anaerobic membrane bioreactors (AnMBRs). Membr Water Treat 3(1):1–23

    Article  Google Scholar 

  • Wang LK, Vaccari DA, Li Y, Shammas NK (2005) Chemical precipitation. In: Physicochemical treatment processes. Humana Press, Totowa, pp 141–197

    Chapter  Google Scholar 

  • Wang Z, Xue M, Huang K, Liu Z (2011) Textile dyeing wastewater treatment. In: Advances in treating textile effluent. InTech, London, pp 91–116

    Google Scholar 

  • Yongzhen P, Hongxun H, Shuying W, Youwei C, Zhiguo Y (2008) Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system. J Environ Sci 20(4):398–403

    Article  Google Scholar 

  • Yu GAO, Chao LIU (2008) Municipal wastewater treatment using sequencing batch biofilm reactor (SBBR). In: The international conference on advances in chemical technologies for water and wastewater treatment, pp 617–624

    Google Scholar 

  • Yu L, Han M, He F (2017) A review of treating oily wastewater. Arab J Chem 10:S1913–S1922. https://doi.org/10.1016/j.arabjc.2013.07.020

    Article  CAS  Google Scholar 

  • Yuan H, Abu-Reesh IM, He Z (2015) Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis. Chem Eng J 270:437–443

    Article  CAS  Google Scholar 

  • Zheng C, Zhao L, Zhou X, Fu Z, Li A (2013) Treatment technologies for organic wastewater. Water Treat 11:50–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meena, M., Sonigra, P., Yadav, G., Barupal, T. (2021). Wastewater Treatment Techniques: An Introduction. In: Shah, M.P. (eds) Removal of Emerging Contaminants Through Microbial Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-5901-3_8

Download citation

Publish with us

Policies and ethics