Skip to main content

New Bioremediation Technologies to Remove Heavy Metals and Radionuclides

  • Chapter
  • First Online:
Removal of Emerging Contaminants Through Microbial Processes

Abstract

Environment of this planet is facing hazards from various pollutants, among which heavy metal and radionuclide pollution is of great importance. This pollution is a resultant of both geological and anthropogenic activities. Various industrial and municipal solid wastes have been a major source of heavy metal contamination in soil, water and also as atmospheric aerosols in air. Similarly, radioactive wastes from nuclear plants and places where radioactive materials are used (e.g., medical centers) are contributing to radionuclide pollution of the environment. These contaminants are harmful for living beings and cause various health hazards to them. Proper management of wastes from these sources is required along with environment-friendly remedial techniques. Phytoremediation has been used in this regard for many years. However, nowadays, novel biotechnological tools are used for achieving paths in bioremediation through microorganisms. Microbes possess the ability to biotransform, biosorb, and biomineralize these metals and radionuclides. Techniques are now being availed to identify the microorganisms and study their biological functions in order to use them in remediating these hazardous pollutants from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel RO, Rahman HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565

    Article  Google Scholar 

  • Aleksakhin RM (2009) Radioactive contamination as a type of soil degradation. Eurasian Soil Sci 42:1386–1396

    Article  Google Scholar 

  • Aleksakhin RM, Buldakov LA, Gubanov VA (2001) In: Il’in LA, Gubanov VA (eds) Large radiation accidents: consequences and control measures. IzdAT, Moscow, p 752

    Google Scholar 

  • Al-Zoughool M, Krewski D (2009) Health effects of radon: a review of the literature. Int J Radiat Biol 85:57–69

    Article  CAS  PubMed  Google Scholar 

  • Amachi S, Minami K, Miyasaka I, Fukunaga S (2010) Ability of anaerobic microorganisms to associate with iodine: 125I tracer experiments using laboratory strains and enriched microbial communities from subsurface formation water. Chemosphere 79:349–354

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1999) Toxicological profile for ionizing radiation. ATSDR, Atlanta, p 438

    Google Scholar 

  • Berradi H, Bertho JM, Dudoignon N, Mazur A, Grandcolas L, Baudelin C (2008) Renal anemia induced by chronic ingestion of depleted uranium in rats. Toxicol Sci 103(2):397–408

    Article  CAS  PubMed  Google Scholar 

  • Bogutskaya NG, Zuykov MA, Naseka AM, Anderson EB (2011) Normal axial skeleton structure in common roach Rutilus rutilus (Actinopterygii: Cyprinidae) and malformations due to radiation contamination in the area of the Mayak (Chelyabinsk Province, Russia) nuclear plant. J Fish Biol 79:991–1016

    Article  CAS  PubMed  Google Scholar 

  • Bonavigo L, Zucchetti M, Mankolli H (2009) Water radioactive pollution and related environmental aspects. J Int Environ Appl Sci 4(3):357–363

    CAS  Google Scholar 

  • Brennwald MS, Dorp FV (2009) Radiological risk assessment and biosphere modelling for radioactive waste disposal in Switzerland. J Environ Radioact 100(12):1058–1061

    Article  CAS  PubMed  Google Scholar 

  • California Base Closure Environmental Committee (1994) Treatment technologies applications matrix for base closure activities, Rev 1. Technology Matching Process Action Team, November 1994

    Google Scholar 

  • Canu IG, Laurent O, Pires N, Laurier D, Dublineau I (2011) Health effects of naturally radioactive water ingestion: the need for enhanced studies. Environ Health Perspect 119(12):1676–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho FP, Oliveira JM (2010) Uranium isotopes in the Balkan’s environment and foods following the use of depleted uranium in the war. Environ Int 36(4):352–360

    Article  CAS  PubMed  Google Scholar 

  • Chang HO (2001) Hazardous and radioactive waste treatment technologies handbook. CRP Press, Boca Raton

    Google Scholar 

  • Das A, Osborne JW (2018) Bioremediation of heavy metals. In: Environmental chemistry for a sustainable world 11. Springer, New York, p 9

    Google Scholar 

  • Demey H, Vincent T, Guibal E (2018) A novel algal-based sorbent for heavy metal removal. Chem Eng J 332:582–595

    Article  CAS  Google Scholar 

  • Fang L, Huang Q, Wei X, Liang W, Rong X, Chen W, Cai P (2010) Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresour Technol 101:5774–5779

    Article  CAS  PubMed  Google Scholar 

  • Gerber MA, Fayer MJ (1994) In situ remediation integrated program evaluation and assessment of containment technology. US DOE, Report

    Google Scholar 

  • Ginneken LV, Meers E, Guisson R (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15(4):227–236

    Article  Google Scholar 

  • Goodby J (2005) The limited test ban negotiations, 1954-63: how a negotiator viewed the proceedings. Int Negot 10:381–404

    Article  Google Scholar 

  • Green SJ, Prakash O, Jasrotia P, Overholt WA, Cardenas E, Hubbard D (2012) Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl Environ Microbiol 78:1039–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazra G (2018) Radioactive pollution: an overview. Holist Approach Environ 8(2):48–65

    CAS  Google Scholar 

  • Hegazy AK, Emam MH (2011) Accumulation and soil-to-plant transfer of radionuclides in the Nile Delta coastal black sand habitats. Int J Phytoremediation 13:140–155

    Article  CAS  PubMed  Google Scholar 

  • Hejabi AT, Basavarajappa HT, Karbassi AR, Monavari SM (2011) Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environ Monit Assess 182:1–13

    Article  CAS  Google Scholar 

  • Holker U, Schmiers H, Grosse S, Winkelhofer M, Polsakiewicz M, Ludwig S (2002) Solubilization of low-rank coal by Trichoderma atroviride: evidence for the involvement of hydrolytic and oxidative enzymes by using 14C-labelled lignite. J Ind Microbiol Biotechnol 28:207–212

    Article  CAS  PubMed  Google Scholar 

  • Hu QH, Weng JQ, Wang JS (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101:426–437

    Article  CAS  PubMed  Google Scholar 

  • Huertas MJ, Lopez-Maury L, Giner-Lamia J, Sanchez-Riego AM, Florencio FJ (2014) Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 4:865–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IAEA (International Atomic Energy Agency) (2001) Handling and processing of radioactive waste from nuclear applications. Technical reports series no. 402. IAEA, Vienna

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (2004) IAEA safety glossary-terminology used in nuclear safety and radiation protection. IAEA, Vienna

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (2007) IAEA safety glossary-terminology used in nuclear safety and radiation protection. IAEA, Vienna, p 227

    Google Scholar 

  • Isaksson M, Raaf CL (2016) Environmental radioactivity and emergency preparedness. CRC Press Taylor and Francis, Boca Raton

    Google Scholar 

  • Izrael YA, Vakulovskii SM, Vetrov VA (1990) Chernobyl: radioactive contamination of natural media. Gidrometeoizdat, Leningrad, p 296

    Google Scholar 

  • Izrael YA, Kvasnikova EV, Nazarov IM, Fridman SD (1994) Global and regional radioactive Cs-137 pollution in the European part of the former USSR. Meteorol Gidrol 5:5–9

    Google Scholar 

  • Khan MF, Wesley SG (2011) Assessment of health safety from ingestion of natural radionuclides in seafoods from a tropical coast, India. Mar Pollut Bull 62(2):399–404

    Article  CAS  PubMed  Google Scholar 

  • Khan R, Israili SH, Ahmad H, Mohan A (2005) Heavy metal pollution assessment in surface water bodies and its suitability for irrigation around the Neyveli lignite mines and associated industrial complex, Tamil Nadu, India. Mine Water Environ 24:155–161

    Article  CAS  Google Scholar 

  • Kinoshitaa N, Suekia K, Sasaa K, Kitagawaa J, Ikarashia S, Nishimuraa T, Wonga Y, Satoua Y, Handaa K, Takahashia T, Satob M, Yamagatab T (2011) Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-East Japan. PNAS 108(49):19526–19529

    Article  Google Scholar 

  • Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollution 97:209–221

    Article  CAS  Google Scholar 

  • Law GT, Geissler A, Lloyd JR, Livens FR, Boothman C, Begg JD (2010) Geomicrobiological redox cycling of the transuranic element neptunium. Environ Sci Technol 44:8924–8929

    Article  CAS  PubMed  Google Scholar 

  • Li C, Xu Y, Wei J, Dong X, Wang D, Liu B (2013) Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Chem Eng J 171:1060–1068

    Google Scholar 

  • Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16:254

    Article  CAS  PubMed  Google Scholar 

  • Mane P, Bhosle A, Jangam C, Vishwakarma C (2011) Bioadsorption of selenium by pretreated algal biomass. Adv Appl Sci Res 2:202–207

    CAS  Google Scholar 

  • Mao J, Won SW, Yun Y-S (2013) Development of poly (acrylic acid)-modified bacterial biomass as a high-performance biosorbent for removal of Cd (II) from aqueous solution. Ind Eng Chem Res 52:6446–6452

    Article  CAS  Google Scholar 

  • Mohner M, Lindtner M, Otten H, Gille HG (2006) Leukemia and exposure to ionizing radiation among German uranium miners. Am J Ind Med 49:238–248

    Article  PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. Toxic Met Atmos 17:33–52

    CAS  Google Scholar 

  • Paul D (2017) Research on heavy metal pollution of river Ganga: a review. Ann Agrar Sci 15:278–286

    Article  Google Scholar 

  • Payne TE, Edis R, Fenton BR, Waite TD (2001) Comparison of laboratory uranium sorption data with ‘in situ distribution coefficients’ at the Koongarra uranium deposit, Northern Australia. J Environ Radioact 57(1):35–55

    Article  CAS  PubMed  Google Scholar 

  • Prat O, Berenguer F, Steinmetz G, Ruat S, Sage N, Quemeneur E (2010) Alterations in gene expression in cultured human cells after acute exposure to uranium salt: involvement of a mineralization regulator. Toxicol In Vitro 24(1):160–168

    Article  CAS  PubMed  Google Scholar 

  • Pravalie R (2014) Nuclear weapons tests and environmental consequences: a global perspective. Ambio 43:729–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prohl G, Olyslaegers G, Kanyar B (2005) Development and comparison of five site-specific biosphere models for safety assessment of radioactive waste disposal. J Radiol Prot 25(4):343–373

    Article  CAS  PubMed  Google Scholar 

  • Quiton KG, Doma B Jr, Futalan CM, Wan M-W (2018) Removal of chromium (VI) and zinc (II) from aqueous solution using kaolin-supported bacterial biofilms of Gram-negative E. coli and Gram-positive Staphylococcus epidermidis. Sustain Environ Res 28:206–213

    Article  CAS  Google Scholar 

  • Rajaganapathy V, Xavier F, Sreekumar D, Mandal PK (2011) Heavy metal contamination in soil, water and fodder and their presence in livestock and products: a review. J Environ Sci Technol 4(3):234–249

    Article  CAS  Google Scholar 

  • Ramrakhiani L, Majumdar R, Khowala S (2011) Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: surface characterization and mechanism of biosorption. Chem Eng J 171:1060–1068

    Article  CAS  Google Scholar 

  • Roh C, Kang C, Jonathan RL (2015) Microbial bioremediation processes for radioactive waste. Korean J Chem Eng 32(9):1720–1726

    Article  CAS  Google Scholar 

  • Rungini L, Costa G, Congestri R, Antonaroli S, di Toppi LS, Bruno L (2018) Phosphorus and metal removal combined with lipid production by the green microalga Desmodesmus sp.: an integrated approach. Plant Physiol Biochem 125:45–51

    Article  Google Scholar 

  • Sengupta S, Das P, Mukhopadhyay A, Datta S (2017) Microbial biosorption and improved/genetically modified biosorbents for toxic metal removal and thermodynamics. In: Das S, Dash HR (eds) Handbook of metal–microbe interactions and bioremediation. CRC Press, pp 267–280. Chapter 16. https://doi.org/10.1201/9781315153353

  • Smičiklas I, Šljivić-Ivanović M (2016) Radioactive contamination of the soil: assessments of pollutants mobility with implication to remediation strategies. In: Soil contamination-current consequences and further solutions, vol 13. InTechOpen, London

    Google Scholar 

  • Souidi M, Gueguen Y, Linard C, Dudoignon N, Grison S, Baudelin C (2005) In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat. Toxicology 214(1–2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Su C, Jiang LQ, Zhang WJ (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skeptics Crit 3(2):24–38

    Google Scholar 

  • Szarlowicz K, Stobinski M, Hamerlik L, Bitusik P (2019) Origin and behavior of radionuclides in sediment core: a case study of the sediments collected from man-made reservoirs located in the past mining region in Central Slovakia. Environ Sci Pollut Res 26:7115–7122

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

    Article  Google Scholar 

  • Tasat DR, Orona NS, Mandalunis PM, Cabrini RL, Ubios AM (2007) Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate. Arch Toxicol 81:319–326

    Article  CAS  PubMed  Google Scholar 

  • Taulan M, Paquet F, Maubert C, Delissen O, Demaille J, Romey MC (2004) Renal toxicogenomic response to chronic uranyl nitrate insult in mice. Environ Health Perspect 112:1628–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Experientia Supplementum 101. Springer, Basel

    Google Scholar 

  • Thompson LA, Darwish WS (2019) Environmental chemical contaminants in food: review of a global problem. Journal of Toxicology 2019:2345283

    Article  PubMed  PubMed Central  Google Scholar 

  • Tissandié E, Gueguen Y, Lobaccaro JM, Grandcolas L, Voisin P, Aigueperse J (2007) In vivo effects of chronic contamination with depleted uranium on vitamin D3 metabolism in rat. Biochim Biophys Acta 1770(2):266–272

    Article  PubMed  Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation-report of the United Nations Scientific Committee on the effects of atomic radiation to the General Assembly. United Nations, New York, p 654

    Google Scholar 

  • Valdovinos V, Monroy-Guzman F, Bustos E (2014) Treatment methods for radioactive wastes and its electrochemical applications. In: Environmental risk assessment of soil contamination. InTechOpen, London, p 14

    Google Scholar 

  • Walker JS, Don GW (2013) Mathematics and music. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wang J, Li Q, Li M-M, Chen T-H, Zhou Y-F, Yue Z-B (2014) Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. Bioresour Technol 163:374–376

    Article  CAS  PubMed  Google Scholar 

  • Wijnhoven S, Leuven RSEW, Velde GVD, Jungheim G, Koelemij EI, Vries FTD, Eijsackers HJP, Smits AJM (2007) Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species- and location-specific characteristics. Arch Environ Contam Toxicol 52:603–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network Ecology 2011:402647

    Google Scholar 

  • Yan G, Viraraghavan T (2000) Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA-Pretoria 26:119–124

    CAS  Google Scholar 

  • Yin K, Lv M, Wang Q, Wu Y, Liao C, Zhang W, Chen L (2016) Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from pseudomonas aeruginosa PA1. Water Res 103:383–390

    Article  CAS  PubMed  Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    Article  CAS  Google Scholar 

  • Yu H, Ni SJ, He ZW, Zhang CJ, Nan X, Kong B, Weng ZY (2014) Analysis of the spatial relationship between heavy metals in soil and human activities based on landscape geochemical interpretation. J Geochem Explor 146:136–148

    Article  CAS  Google Scholar 

  • Yue Z-B, Li Q, Li C-C, Chen T-H, Wang J (2015) Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria. Bioresour Technol 101:5774–5779

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, S., Roy, U., Chowdhary, S., Das, P. (2021). New Bioremediation Technologies to Remove Heavy Metals and Radionuclides. In: Shah, M.P. (eds) Removal of Emerging Contaminants Through Microbial Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-5901-3_2

Download citation

Publish with us

Policies and ethics